Skip to main content
Log in

Cooperative spectrum sensing under unreliable reporting channels

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article analyzes a cooperative spectrum sensing scheme using a distributed approach with a fusion center considering an unreliable reporting channel. The spectrum sensing is applied to a cognitive radio system, where each cognitive radio sends its decision to a fusion center through a reporting channel, in which an n-out-of-K rule is applied. We compare the performance of the decision rules, analyzing the impact of the errors introduced by the reporting channel, considering the Bayes risk criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellingson, S. W. (2005). Spectral occupancy at VHF: Implications for frequency-agile cognitive radios. IEEE Vehicular Technology Conference, 2, 1379–1382.

    Google Scholar 

  2. Mitola, J. III, Maguire, G. Q. Jr. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  4. Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.

    Article  Google Scholar 

  5. Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5), 849–877.

    Article  Google Scholar 

  6. Quan, Z., Cui, S., Poor, H. V., & Sayed, A. (2008). Collaborative wideband sensing for cognitive radios. IEEE Signal Processing Magazine, 25(6), 60–73.

    Article  Google Scholar 

  7. Zhang, W., Mallik, R., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  8. Ghasemi, A., & Sousa, E. S. (2007). Opportunistic spectrum access in fading channels through collaborative sensing. Journal of Communications, 2(2), 71–82.

    Article  Google Scholar 

  9. Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  10. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.

    Article  Google Scholar 

  11. Chaudhari, S., Lunden, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions?. IEEE Transactions on Signal Processing, 60(1), 18–28.

    Article  MathSciNet  Google Scholar 

  12. Chaudhari, S., Lundén, J., Koivunen, V., & Vincent Poor, H. (2013). BEP walls for cooperative sensing in cognitive radios using k-out-of-n fusion rules. Signal Processing, 93(7), 1900–1908.

    Article  Google Scholar 

  13. Birkan Yilmaz, H., Tugcu, T., & Fatih, A. (2012). Novel quantization-based spectrum sensing scheme under imperfect reporting channel and false reports. International Journal of Communication Systems. doi:10.1002/dac.2408.

  14. Kay, S. M. (1998). Fundamentals of statical signal processing, volume II: Detection theory. New Jersey: Prentice Hall.

  15. Varshney, P. K. (1996). Distributed detection and data fusion. New York: Springer.

    Google Scholar 

  16. Chaudhari, S., Lunden, J., Koivunen, V. (2012). BEP walls for cooperative bayesian detection with reporting channel errors. In 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 2166–2172.

  17. Mariani, A., Giorgetti, A., & Chiani, M. (2011). Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Transactions on Communications, 59(12), 3410–3420.

    Article  Google Scholar 

  18. Yin, W., Ren, P., Cai, J., & Su, Z. (2013). Performance of energy detector in the presence of noise uncertainty in cognitive radio networks. Wireless Networks, 19(5), 629–638.

    Article  Google Scholar 

  19. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  20. Zhou, X., Ma, J., Li, G., Kwon, Y., & Soong, A. C. K. (2010). Probability-based combination for cooperative spectrum sensing. IEEE Transactions on Communications, 58(2), 463–466.

    Article  Google Scholar 

  21. Stewart, J. (2000). Multivariable calculus: Concepts and contexts. Brooks/Cole.

Download references

Acknowledgments

This work was funded by CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda de Paula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula, A., Panazio, C. Cooperative spectrum sensing under unreliable reporting channels. Wireless Netw 20, 1399–1407 (2014). https://doi.org/10.1007/s11276-013-0683-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0683-9

Keywords

Navigation