Skip to main content
Log in

Phytoplasma diseases of plants: molecular diagnostics and way forward

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phytoplasmas are obligate phytopathogenic bacteria associated with devastating diseases in hundreds of crops across the world. They have been responsible for huge economic losses in many crop plants for decades now. Isolation and establishment of axenic culture of phytoplasma in complex media is a recent progress in phytoplasma research. Earlier methods for phytoplasma disease detection included symptom profiling, microscopy, serology and dodder transmission studies. With advancement in the field of molecular biology, phytoplasma diagnostics and characterisation witnessed radical improvement. Starting from PCR amplification which often necessities a nested PCR on account of low titre of phytoplasmas, to the closed tube quantitative PCR assays and then the ddPCR, an array of diagnostics have been developed for phytoplasma. The isothermal diagnostic platforms are the latest addition to this and the Loop Mediated Isothermal Amplification (LAMP) assay has been applied for the detection of phytoplasma from several hosts. The futuristic approach in phytoplasma detection will be very likely provided by an integration of nanotechnology and molecular diagnostics. Phytoplasma disease management majorly relies on early detection, vector control, use of disease free planting materials and cultivation of resistant varieties. Hence understanding the molecular mechanism of phytoplasma—host interaction is as important as timely and accurate detection, in the management of phytoplasma diseases. Further, the changing climatic scenario and global warming may lead to an upsurge in the phytoplasma diseases spread and severity across the world, making disease management even more challenging.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abba S, Galetto L, Carle P, Carrere S, Delledonne M, Foissac X et al (2014) RNA-Seq profile of flavescence doree phytoplasma in grapevine. BMC Genomics 15(1):1088

    PubMed  PubMed Central  Google Scholar 

  • Abbasi A, Hasanzadeh N, Zamharir M, Tohidfar M (2019) Identification of a group 16SrIX ‘Candidatus Phytoplasma phoenicium’ phytoplasma associated with sweet orange exhibiting decline symptoms in Iran. Aust Plant Dis Notes 14(1):1–4

    Google Scholar 

  • Abou-Jawdah Y, Aknadibossian V, Jawhari M, Tawidian P, Abrahamian P (2019) Real-time PCR protocol for phytoplasma detection and quantification. Methods Mol Biol 1875:117–130. https://doi.org/10.1007/978-1-4939-8837-2_9

    Article  CAS  PubMed  Google Scholar 

  • Alemu K (2014) Real time PCR and its application in plant disease diagnostics. Adv Life Sci Technol 27:39–49

    Google Scholar 

  • Alhudaib K, Arocha Y, Wilson M, Jones P (2007) “Al-Wijam’’’, a new phytoplasma disease of date palm in Saudi Arabia.” Bull Insectol 60(2):285

    Google Scholar 

  • Aliaga F, Hopp E, Alvarez E, Becerra Lopez-Lavalle LA (2018) First report of a ’Candidatus Phytoplasma asteris’ isolate associated with banana elephantiasis disease in Colombia. New Dis Rep 37:12

    Google Scholar 

  • Alvarez E, Mejía JF, Contaldo N, Paltrinieri S, Duduk B, Bertaccini A (2014) ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Dis 98(3):311–318

    CAS  PubMed  Google Scholar 

  • Alves MS, Ribeiro GM, Souza AN, Carvalho CM (2017) First report of a 16SrIII-B phytoplasma associated with Momordica charantia witches’-broom in Brazil. Plant Dis 101(7):1314

    Google Scholar 

  • Angelini E, Bianchi GL, Filippin L, Morassutti C, Borgo M (2007) A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. J Microbiol Methods 68(3):613–622

    CAS  PubMed  Google Scholar 

  • Bahder BW, Helmick EE, Mou DF, Harrison NA, Davis R (2018) Digital PCR technology for detection of palm-infecting phytoplasmas belonging to group 16SrIV that occur in Florida. Plant Dis 102(5):1008–1014

    CAS  PubMed  Google Scholar 

  • Bahder BW, Soto N, Mou DF, Humphries ARE, Helmick EE (2020) Quantification and distribution of the 16SrIV-D Phytoplasma in the wild date palm, Phoenix sylvestris, at different stages of decline using Quantitative PCR (qPCR) analysis. Plant Dis 104(5):1328–1334

    PubMed  Google Scholar 

  • Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV et al (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188(10):3682–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148(1):157–167

    CAS  PubMed  Google Scholar 

  • Bekele B, Hodgetts J, Tomlinson J, Boonham N, Nikolic P, Swarbrick P et al (2011) Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol 60(2):345–355

    CAS  Google Scholar 

  • Bonnet F, Saillard C, Kollar A, Seemuller E, Bove JM (1990) Detection and differentiation of the mycoplasma like organism associated with apple proliferation disease using cloned DNA probes. Mol Plant Microbe Interact 3(6):438–443

    CAS  Google Scholar 

  • Brzin J, Ermacora P, Osler R, Loi N, Ravnikar M, Petrovic N (2003) Detection of apple proliferation phytoplasma by ELISA and PCR in growing and dormant apple trees. J Plant Dis Prot 110(5):476–483

    CAS  Google Scholar 

  • Cagirgan MI, Mbaye N, Silme RS, Ouedraogo N, Topuz H (2013) The impact of climate variability on occurrence of sesame phyllody and symptomatology of the disease in a Mediterranean environment. Turkish Journal of Field Crops 18(1):101–108

    Google Scholar 

  • Casassola A, Brammer SP, Chaves MS, Martinelli JA, Grando MF, Denardin ND (2013) Gene expression: a review on methods for the study of defense-related gene differential expression in plants. Am J Plant Sci 4:64–73

    Google Scholar 

  • Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A, Lachman O, Dror O, Nissan G, Manulis-Sasson S (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68(2):229–238

    CAS  Google Scholar 

  • Chang FL, Chen CC, Lin CP (1995) Monoclonal antibody for the detection and identification of a phytoplasma associated with rice yellow dwarf. Eur J Plant Pathol 101(5):11–518

    Google Scholar 

  • Chen TA, Jiang XF (1988) Monoclonal antibodies against the maize bushy stunt agent. Can J Microbiol 34:6–11

    Google Scholar 

  • Chitarra W, Siciliano I, Ferrocino I, Gullino ML, Garibaldi A (2015) Effect of elevated atmospheric CO2 and temperature on the disease severity of rocket plants caused by Fusarium Wilt under Phytotron conditions. PLoS ONE 10(10):e0140769. https://doi.org/10.1371/journal.pone.0140769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant Microbe Interact 17(11):1175–1184

    CAS  PubMed  Google Scholar 

  • Contaldo N, Bertaccini A (2019) Phytoplasma Cultivation. In: Bertaccini A, Oshima K, Kube M, Rao G (eds) Phytoplasmas: Plant Pathogenic Bacteria-III. Springer, Singapore. https://doi.org/https://doi.org/10.1007/978-981-13-9632-8_6.

  • Contaldo N, Bertaccini A, Paltonieri S, Windsor HM, Windsor GD (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617

    CAS  Google Scholar 

  • Contaldo N, D’Amico G, Paltrinieri S, Diallo HA, Bertaccini A, Rosete YA (2019) Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiol Res 223:51–57

    PubMed  Google Scholar 

  • Contaldo N, Dolanc D, Bertaccini A, Dermastia M (2018). Isolation of diverse phytoplasmas from symptomatic grapevine samples. In: “Bois noir” Fifth Workshop, Liubljana September 18 and 19, a16

  • Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods 127:105–110

    CAS  PubMed  Google Scholar 

  • Cordova I, Oropeza C, Puch-Hau C, Harrison N, Colli-Rodríguez A, Narvaez M et al (2014) A real-time PCR assay for detection of coconut lethal yellowing phytoplasmas of group 16SrIV subgroups A, D and E found in the Americas. Journal of Plant Pathology 96(2):343–352

    Google Scholar 

  • Czarnobai De Jorge C, Gross J (2018) NANO-PUSH - Development of nanofibersemitting insect repellents as part of innovative push-and-pull strategies for control of fruit tree phytoplasma vectors. 11th Young Scientists Meeting, Braunschweig, Germany, November 14–16

  • Daquan L, Murong C, Shabin Y (2002) Detection of the yellow leaf disease of arecanut in Hainan by polymerase chain reaction. Trop Agric Sci. 47:172-173

    Google Scholar 

  • Davis RE, Lee I, Dally EL, Dewitt N, Cloned DSM (1988) Cloned nucleic acid hybridization probes in detection and classification of mycoplasma like organisms (MLOs). Acta Hort 234:115–121

    Google Scholar 

  • De Jonghe K, De Roo I, Maes M (2017) Fast and sensitive on-site isothermal assay (LAMP) for diagnosis and detection of three fruit tree phytoplasmas. Eur J Plant Pathol 147(4):749–759

    Google Scholar 

  • Deeley J, Stevens WA, Fox RTV (1979) Use of Dienes’ stain to detect plant diseases induced by mycoplasma like organisms. Phytopathology 69(1):1169–1171

    Google Scholar 

  • Demeuse KL, Grode AS, Szendrei Z (2016) Comparing qPCR and nested PCR diagnostic methods for aster yellows phytoplasma in aster leafhoppers. Plant Dis 100(12):2513–2519

    PubMed  Google Scholar 

  • Deng S, Hiruki C (1991) Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J Microbiol Methods 14(1):53–61

    CAS  Google Scholar 

  • Dickinson M (2015) Loop-Mediated Isothermal Amplification (LAMP) for detection of phytoplasmas in the field. In: Lacomme C (ed) Plant pathology. Humana Press, New York, pp 99–111

    Google Scholar 

  • Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Jpn J Phytopathol 33(4):259–266

    Google Scholar 

  • Duduk B, Ivanovic M, Obradovic A, Paltrinieri S, Bertaccini A (2007) First report of pear decline phytoplasmas on pear in Serbia. Plant Dis 89(7):774–774

    Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28(1):99–139. https://doi.org/10.1080/15427528.2014.865412

    Article  CAS  Google Scholar 

  • Fan G, Cao X, Zhao Z, Deng M (2015) Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma. Acta Physiol Plant 37(10):202. https://doi.org/10.1007/s11738-015-1948-y

    Article  CAS  Google Scholar 

  • Fernandez FD, Meneguzzi NG, Guzman FA, Kirschbaum DS, Conci VC, Nome CF et al (2015) Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. Int J Syst Evol Microbiol 65(8):2741–2747

    CAS  PubMed  Google Scholar 

  • Firrao G, Moretti M, Rosquete MR, Gobbi E, Locci R (2005) Nanobiotransducer for detecting flavescence doree phytoplasma. J Plant Pathol 87:101–107

    CAS  Google Scholar 

  • Flores D, Mello APDOA, Pereira TBC, Rezende JAM, Bedendo IP (2015) A novel subgroup 16SrVII-D phytoplasma identified in association with erigeron witches’ broom. Int J Syst Evol Microbiol 65(8):2761–2765

    CAS  PubMed  Google Scholar 

  • Galetto L, Bosco D, Marzachi C (2005) Universal and group-specific real time PCR diagnosis of flavescence doree (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Ann Appl Biol 147(2):191–201

    CAS  Google Scholar 

  • Galetto L, Marzachi C, Marques R, Graziano C, Bosco D (2011) Effects of temperature and CO2 on phytoplasma multiplication pattern in vector and plant. Bull Insectol 64:S151–S152

    Google Scholar 

  • Goto M, Honda E, Ogura A, Nomoto A, Hanaki KI (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 46(3):167–172

    CAS  PubMed  Google Scholar 

  • Gullino ML, Pugliese M, Gilardi G, Garibaldi A (2018) Effect of increased CO 2 and temperature on plant diseases: a critical appraisal of results obtained in studies carried out under controlled environment facilities. J Plant Pathol 100(3):371–389

    Google Scholar 

  • Gundersen DE, Lee IM (1996) Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151

    CAS  Google Scholar 

  • Haggis GH, Sinha RC (1978) Scanning electron microscopy of mycoplasma-like organisms after freeze fracture of plant tissues affected with clover phyllody and aster yellows. Phytopathology 68:677–680

    Google Scholar 

  • Harrison NA (1996) PCR assay for detection of the phytoplasma associated with maize bushy stunt disease. Plant Dis 80:263–269

    CAS  Google Scholar 

  • Harrison NA, Richardson PA, Kramer JB, Tsai JH (1994a) Detection of the mycoplasma-like organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathol 43(6):998–1008

    CAS  Google Scholar 

  • Harrison NA, Richardson PA, Kramer JB, Tsai JH (1994b) Detection of the mycoplasmalike organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathol 43:998–100

    CAS  Google Scholar 

  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoat TX, Nhung LTT, Thanh DVT, Bon NG, Duong CA, Ha TN et al (2013) Molecular detection and identification of sugarcane white leaf phytoplasma in Vietnam. Int Sugar J 1357:505–511

    Google Scholar 

  • Hodgetts J (2019) Rapid sample preparation and LAMP for phytoplasma detection. In: Musetti R, Pagliari L (eds) Phytoplasmas. Methods in molecular biology. Humana Press, New York, pp 187–201

    Google Scholar 

  • Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423. https://doi.org/10.1111/j.1364-3703.2008.00472.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5’-3’exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci 88(16):7276–7280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikten C, Ustun R, Catal M, Yol E, Uzun B (2016) Multiplex Real-Time qPCR assay for simultaneous and sensitive detection of phytoplasmas in sesame plants and insect vectors. PLoS ONE 19: 11(5):e0155891. doi: https://doi.org/10.1371/journal.pone.0155891. eCollection 2016.

  • IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54(4):1243–1255

    Google Scholar 

  • Jarausch W, Saillard C, Dosba F, Bove JM (1994) Differentiation of mycoplasmalike organisms (MLOs) in European fruit trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO. Appl Environ Microbiol 60:2916–2923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YE, Chen TA, Chiykowski LN, Sinha RC (1989) Production of monoclonal antibodies to peach eastern X-disease agent and their use in disease detection. Can J Plant Path 11:325–331

    Google Scholar 

  • Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung HY, Sawayanagi T et al (2001) Cloning and expression analysis of Phytoplasma protein translocation genes. Mol Plant Microbe Interact 14(9):1043–1050

    CAS  PubMed  Google Scholar 

  • Kanatiwela-de Silva C, Damayanthi M, de Silva N, Wijesekera R, Dickinson M, Weerakoon D, Udagama P (2019) Immunological detection of the Weligama coconut leaf wilt disease associated phytoplasma: development and validation of a polyclonal antibody based indirect ELISA. PLoS ONE 14(4):e0214983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15(1):7–13

    CAS  Google Scholar 

  • Kenyon L, Henriquez NP, Harrison NA (1998) Diagnosis and detection of phytoplasma diseases of tropical crops. British Crop Protection Conference, Pests and Diseases. Brighton. pp. 779–787

  • Khadhair AH, Evans IR, Choban B (2002) Identification of aster yellows phytoplasma in garlic and green onion by PCR-based methods. Microbiol Res 157(3):161–167

    CAS  PubMed  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238(4824):197–200

    CAS  PubMed  Google Scholar 

  • Kogej Z, Dermastia M, Mehle N (2020) Development and Validation of a new TaqMan real-time PCR for detection of ‘Candidatus Phytoplasma pruni’. Pathogens 9:642

    CAS  PubMed Central  Google Scholar 

  • Kogovsek P, Hodgetts J, Hall J, Prezelj N, Nikolic P, Mehle N et al (2015) LAMP assay and rapid sample preparation method for on-site detection of flavescence doree phytoplasma in grapevine. Plant Pathol 64(2):286–296

    CAS  PubMed  Google Scholar 

  • Kogovsek P, Mehle N, Pugelj A, Jakomin T, Schroers HJ, Ravnikar M et al (2017) Rapid loop-mediated isothermal amplification assays for grapevine yellows phytoplasmas on crude leaf-vein homogenate has the same performance as qPCR. Eur J Plant Pathol 148(1):75–84

    CAS  Google Scholar 

  • Koinuma H, Maejima K, Tokuda R, Kitazawa Y, Nijo T, Wei W et al (2020) Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. Sci Rep 10:4291. https://doi.org/10.1038/s41598-020-61042-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnareddy M (2013) Impact of climate change on insect vectors and vector-borne plant viruses and phytoplasma. In: Singh H, Rao N, Shivashankar K (eds) Climate-resilient horticulture: adaptation and mitigation strategies. Springer, New York, pp 255–277

    Google Scholar 

  • Kumar M, Rao GP (2017) Molecular characterization, vector identification and sources of phytoplasmas associated with brinjal little leaf disease in India. 3 Biotech 7(1):7

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Arora K (2020) Trends in nano-inspired biosensors for plants. Mater Sci Energy Technol 3:255–273

    CAS  Google Scholar 

  • Kumari S, Nagendran K, Rai AB, Singh B, Rao GP, Bertaccini A (2019) Global status of phytoplasma diseases in vegetable crops. Front Microbiol 10:1349. https://doi.org/10.3389/fmicb.2019.01349

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Ann Rev Microbiol 54(1):221–255

    CAS  Google Scholar 

  • Lee IM, Gundersen DE, Hammond RW, Davis RE (1994) Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers from nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84:559–566

    CAS  Google Scholar 

  • Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48(4):1153–1169

    CAS  Google Scholar 

  • Lee IM, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004a) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54(4):1037–10480

    CAS  PubMed  Google Scholar 

  • Lee IM, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842

    CAS  Google Scholar 

  • Lee M, Bottner KD, Secor G, Rivera-Varas V (2006) ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 56(7):1593–1597

    CAS  PubMed  Google Scholar 

  • Lee M, Martini M, Marcone C, Zhu SF (2004b) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54(2):337–347

    CAS  PubMed  Google Scholar 

  • Lefol C, Caudwell A, Lherminier J, Larrue J (1993) Attachment of the Flavescence dorée pathogen (MLO) to leafhopper vectors and other insects. Ann Appl Biol 123:611–622. https://doi.org/10.1111/j.1744-7348.1993.tb04931.x.CrossRefGoogleScholar

    Article  Google Scholar 

  • Lefol C, Lherminier J, Boudon-Padieu E, Larrue J, Louis C, Caudwell A (1994) Propagation of Flavescence dorée MLO (Mycoplasma-Like-Organism) in the leafhopper vector Euscelidius variegatus Kbm. J Invertebr Pathol 63:285–293. https://doi.org/10.1006/jipa.1994.1053

    Article  Google Scholar 

  • Linck H, Kruger E, Reineke A (2017) A multiplex TaqMan qPCR assay for sensitive andrapid detection of phytoplasmas infecting Rubus species. PLoS ONE 12(5):e0177808. https://doi.org/10.1371/journal.pone.0177808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK et al (2014) High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol 55(5):942–957. https://doi.org/10.1093/pcp/pcu029

    Article  CAS  PubMed  Google Scholar 

  • Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol 80(3):210–221

    CAS  Google Scholar 

  • Maggi F, Galetto L, Marzachi C, Bosco D (2014) Temperature-dependent transmission of Candidatus phytoplasma asteris by the vector leafhopper Macrosteles quadripunctulatus Kirschbaum. Entomologia 2(202):87–94

    Google Scholar 

  • Manimekalai R, Kumar RS, Soumya VP, Thomas GV (2010a) Molecular detection of phytoplasma associated with yellow leaf disease in areca palms (Areca catechu) in India. Plant Dis 94(11):1376

    CAS  PubMed  Google Scholar 

  • Manimekalai R, Nair S, Soumya VP, Thomas GV (2013) Phylogenetic analysis identifies a ‘Candidatus Phytoplasma oryzae’- related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. Int J Systemat Evolut Microbiol 63(4):1376–1382

    Google Scholar 

  • Manimekalai R, Nair S, Soumya VP, Roshna OM, Thomas GV (2011) Real-time PCR technique-based detection of coconut root (wilt) phytoplasma. Curr Sci 101(9):1209–1213

    CAS  Google Scholar 

  • Manimekalai R, Soumya VP, Nair S, Thomas GV, Baranwal VK (2014) Molecular characterization identifies 16SrXI-B group phytoplasma (‘Candidatus Phytoplasma oryzae’-related strain) associated with root wilt disease of coconut in India. Sci Hortic 165:288–294

    CAS  Google Scholar 

  • Manimekalai R, Soumya VP, Sathish Kumar R, Selvarajan R, Reddy K, Thomas GV et al (2010b) Molecular detection of 16SrXI group phytoplasma associated with root (wilt) disease of coconut (Cocos nucifera) in India. Plant Dis 94(5):636–636

    CAS  PubMed  Google Scholar 

  • Manimekalai R, Nair S, Gangaraj K, Soumya V, Rao G (2015) Isolation and characterization of partial secA gene from coconut root wilt and arecanut yellow leaf disease phytoplasma and assessment of its possible use for sero diagnostics. Indian Phytopathol 68(4):12

    Google Scholar 

  • Marcone C, Neimark H, Ragozzino A, Lauer U, Seemuller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89(9):805–810

    CAS  PubMed  Google Scholar 

  • Marcone C, Ragozzino A (1996) Comparative ultrastructural studies on genetically different phytoplasmas using scanning electron microscopy. Petria 6(2):125–136

    Google Scholar 

  • Mardi M, Farsad LK, Gharechahi J, Salekdeh GH (2015) In-depth transcriptome sequencing of Mexican lime trees infected with Candidatus Phytoplasma aurantifolia. PLoS ONE 10(7):20

    Google Scholar 

  • Martini M, Loi N, Ermacora P, Carraro L, Pastore M (2007) A real time PCR method for detection and quantification of Candidatus Phytoplasma prunorum in its natural hosts. Bull Insectol 60(2):251–252

    Google Scholar 

  • Martini M, Quaglino F, Bertaccini A (2019) Multilocus genetic characterization of phytoplasmas. In: Bertaccini A, Oshima K, Kube M, Rao G (eds) Phytoplasmas: plant pathogenic bacteria-III. Springer, Singapore

    Google Scholar 

  • Marzachi C (2004) Molecular diagnosis of phytoplasmas. Phytopathol Mediter 43(2):228–231

    CAS  Google Scholar 

  • Marzachi C, Bosco D (2005) Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real time polymerase chain reaction. Mol Biotechnol 30(2):117–127

    CAS  PubMed  Google Scholar 

  • Mehdi A, Baranwal VK, Kochu Babu M, Praveena D (2012) Sequence analysis of 16S rRNA and secA genes confirms the association of 16SrI-B subgroup phytoplasma with oil palm (Elaeis guineensis Jacq) stunting disease in India. J Phytopathol 160(1):6–12

    CAS  Google Scholar 

  • Mehle N, Dreo T, Ravnikar M (2014) Quantitative analysis of “flavescence doreé” phytoplasma with droplet digital PCR. Phytopath Mollicut 4(1):9–15

    Google Scholar 

  • Mirmajlessi SM, Loit E, Maend M, Mansouripour SM (2015) Real time PCR applied to study on plant pathogens: potential applications in diagnosis-a review. Plant Prot Sci 51(4):177–190

    CAS  Google Scholar 

  • Monti M, Martini M, Tedeschi R (2013) EvaGreen real time PCR protocol for specific ‘Candidatus Phytoplasma mali’detection and quantification in insects. Mol Cell Probes 27(3–4):129–136

    CAS  PubMed  Google Scholar 

  • Morcia C, Ghizzoni R, Delogu C, Andreani L, Carnevali P, Terzi V (2020) Digital PCR: what relevance to plant studies? Biology 9(12):433

    CAS  PubMed Central  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154

    CAS  PubMed  Google Scholar 

  • Myrie W, Harrison N, Dollet M, Been B (2007) Molecular detection and characterization of phytoplasmas associated with lethal yellowing disease of coconut palms in Jamaica. Bull Insectol 60(2):159

    Google Scholar 

  • Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W, Harrison NA et al (2017) ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 67(10):3765–3772

    CAS  PubMed  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16(3):223–229

    CAS  PubMed  Google Scholar 

  • Nair S, Manimekalai R, Rao SVP, Graduate GP, (2015) Taqman quantitative PCR for detection of Indian arecanut yellow leaf disease phytoplasma. Phytopath Mollicut 5(2):113–116

    Google Scholar 

  • Nair S, Manimekalai R, Ganga Raj P, Hegde V (2016a) Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma. World J Microbiol Biotechnol 32:108

    PubMed  Google Scholar 

  • Nair S, Manimekalai R, Soumya VP, Likhitha KC (2016b) Dual labelled probe based real time PCR method for detection of 16SrXI-B sub-group phytoplasma associated with coconut root wilt disease in India. Australas Plant Pathol. https://doi.org/10.1007/s13313-016-0406-7

    Article  Google Scholar 

  • Nair S, Roshna OM, Soumya VP, Hegde V, Suresh Kumar M, Manimekalai R et al (2014) Real-time PCR technique for detection of arecanut yellow leaf disease phytoplasma. Australas Plant Pathol. https://doi.org/10.1007/s13313-014-0278-7

    Article  Google Scholar 

  • Nakamura H, Ohgake S, Sahashi N, Yoshikawa N, Kubono T, Takahashi T (1998) Seasonal variation of paulownia witches’-broom phytoplasma in paulownia trees and distribution of the disease in the Tohoku district of Japan. J For Res 3(1):39–42

    Google Scholar 

  • Neda N (2015) Detection, characterization and antimicrobial activity of nano silver against coconut yellow decline phytoplasmas in coconut and ornamental palms in Malaysia. PhD thesis, Universiti Putra Malaysia

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290(5):1899–1910

    CAS  PubMed  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Sidek Z, Dickinson M (2010) Development of a TaqMan real time PCR for sensitive detection of the novel phytoplasma associated with coconut yellow decline in Malaysia. J Plant Pathol 92:769–773

    CAS  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2009) Molecular characterization of a phytoplasma associated with Coconut Yellow Decline (CYD) in Malaysia. Am J Appl Sci 6(7):1331–1340

    CAS  Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14(16):2887–2904

    CAS  PubMed  Google Scholar 

  • Nikolic P, Mehle N, Gruden K, Ravnikar M, Dermastia M (2010) A panel of real time PCR assays for specific detection of three phytoplasmas from the apple proliferation group. Mol Cell Probes 24(5):303–309

    CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ntushelo K, Harrison NA, Elliott ML (2013) Palm phytoplasmas in the caribbean basin. Palms 57:93–100

    Google Scholar 

  • Obura E, Masiga D, Wachira F, Gurja B, Khan ZR (2011) Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP). J Microbiol Methods 84(2):312–316

    CAS  PubMed  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S et al (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36(1):27–29

    CAS  PubMed  Google Scholar 

  • Perera L, Meegahakumbura MK, Wijesekara HRT, Fernando WBS, Dickinson MJ (2012) A phytoplasma is associated with the Weligama coconut leaf wilt disease in Sri Lanka. J Plant Pathol 94(1):205–209

    Google Scholar 

  • Perez-Lopez E, Rodriguez-Martinez D, Olivier CY, Luna-Rodriguez M, Dumonceaux TJ (2017) Molecular diagnostic assays based on cpn60 UT sequences reveal the geographic distribution of subgroup 16SrXIII-(A/I) I phytoplasma in Mexico. Sci Rep 7(1):1–14

    CAS  Google Scholar 

  • Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL et al (2003) Real time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3(1):18

    PubMed  PubMed Central  Google Scholar 

  • Pradit N, Rodriguez-Saona C, Kawash J, Polashock J (2019) Phytoplasma infection influences gene expression of American cranberry. Front Ecol Evol 7:178

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H et al (2012) Detection of Candidatus phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534

    Google Scholar 

  • Rao GP, Panda P, Reddy MG (2020) First report of the association of a 'Candidatus Phytoplasma asteris’ strain with Crossandra infundibuliformis. New Dis Rep 41:38. https://doi.org/10.5197/j.2044-0588.2020.041.038

    Article  Google Scholar 

  • Rao GP, Srivastava S, Gupta PS, Sharma SR, Singh A, Singh S et al (2008) Detection of sugarcane grassy shoot phytoplasma infecting sugarcane in India and its phylogenetic relationships to closely related phytoplasmas. Sugar Tech 10(1):74–80

    CAS  Google Scholar 

  • Rashid U, Bilal S, Bhat KA, Shah TA, Wani TA, Bhat FA, Nazir N (2018) Phytoplasma effectors and their role in plant-insect interaction. Int J Curr Microbiol App Sci 7(2):1136–1148

    Google Scholar 

  • Rashidi M, Galetto L, Bosco D, Bulgarelli A, Vallino M, Veratti F, Marzachi C (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol 15(1):1–12

    Google Scholar 

  • Sanzari I, Leone A, Ambrosone A (2019) Nanotechnology in plant science: to make a long story short. Front Bioeng Biotechnol 7:120

    PubMed  PubMed Central  Google Scholar 

  • Sasikala M, Chithra KR, Solomon JJ, Rajeev G (2001) Development of DAC indirect ELISA for the rapid detection of coconut root (wilt) disease. CORD 17(2):23–35

    Google Scholar 

  • Sasikala M, Rajeev G, Prakash VR, Amith S (2010) Modified protocol of ELISA for rapid detection of coconut root (wilt) disease. J Plant Crop 38(1):16–19

    Google Scholar 

  • Schaff D, Lee M, Davis RE (1992) Sensitive detection and identification of mycoplasma-like organisms in plants by polymerase chain reactions. Biochem Biophys Res Commun 186(3):1503–1509

    CAS  PubMed  Google Scholar 

  • Schneider B, Katzel R, Kube M (2020) Widespread occurrence of ‘Candidatus Phytoplasma ulmi’ in elm species in Germany. BMC Microbiol 20:74. https://doi.org/10.1186/s12866-020-01749-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider B, Seemuller E, Smart CD, Kirkpatrick BC (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Razin S, Tully JG (eds) Molecular and diagnostic procedures in mycoplasmology, vol 1. Academic Press, San Diego, pp 369–380

    Google Scholar 

  • Seddas A, Meignoz R, Daire X, Boudon-Padieu E (1996) Generation and characterization of monoclonal antibodies to Flavescence dorée phytoplasma: serological relationships and differences in electroblot immunoassay profiles of Flavescence doree and elm yellows phytoplasmas. Eur J Plant Pathol 102(8):757–764

    Google Scholar 

  • Seemuller E, Kirkpatrick BC (1996) Detection of phytoplasma infections in plants. Mol Diagnost Proced Mycoplasmol 2:299–311

    Google Scholar 

  • Shahryari F, Shams-Bakhsh M, Safarnejad MR, Safaie N, Ataei Kachoiee S (2013) Preparation of antibody against immunodominant membrane protein (imp) of Candidatus phytoplasma aurantifolia. Iran J Biotechnol 11(1):14–21

    CAS  Google Scholar 

  • Shengjie W, Shengkun W, CaiLi L, Shaoshuai Y, Laifa W, Chungen P et al (2017) Loop-Mediated Isothermal Amplification assay for detection of five phytoplasmas belonging to 16Srl group based on target tuf gene. Scientia Silvae Sinicae 53(8):54–63

    Google Scholar 

  • Siemonsmeier A, Hadersdorfer J, Neumuller M, Schwab W, Treutter D (2019) A LAMP Protocol for the Detection of ‘Candidatus Phytoplasma pyri’, the Causal Agent of Pear Decline. Plant Dis 103(6):1397–1404

    CAS  PubMed  Google Scholar 

  • Siriwardhana PHAP, Gunawardena BWA, Millington S (2012) Detection of phytoplasma associated with Waligama Coconut Leaf Wilt Disease in Sri Lanka by loop mediated isothermal amplification assay performing alkaline polyethylene glycol based DNA extraction. J Microbiol Biotechnol Res 2:712–716

    CAS  Google Scholar 

  • Smart CD, Schneider B, Blomquist CL, Guerra LJ, Harrison NA, Ahrens U et al (1996) Phytoplasma-specific PCR primers based on sequences of the 16S–23S rRNA spacer region. Appl Environ Microbiol 62(8):2988–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K et al (2012) Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. J Gen Plant Pathol 78(6):389–397

    CAS  Google Scholar 

  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49:175–195

    CAS  PubMed  Google Scholar 

  • Sugio A, Hogenhout SA (2012) The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol 15(3):247–254

    CAS  PubMed  Google Scholar 

  • Sunpapao A (2014) Association of ‘Candidatus Phytoplasma cynodontis’ with the yellow leaf disease of ivy gourd in Thailand. Aust Plant Dis Notes 9(1):127

    Google Scholar 

  • Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T et al (2008) In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 98(5):592–599

    CAS  PubMed  Google Scholar 

  • Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882

    CAS  PubMed  Google Scholar 

  • Tomkins M, Kliot A, Maree AF, Hogenhout SA (2018) A multi-layered mechanistic modeling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Curr Opin Plant Biol 44:39–48

    PubMed  Google Scholar 

  • Tomlinson J (2013) In-field diagnostics using loop-mediated isothermal amplification. In: Dickinson M, Hodgetts J (eds) Phytoplasma, methods in molecular biology, vol 938. Humana Press, Totowa, NJ, pp 291–300

    Google Scholar 

  • Tomlinson J, Boonham N (2008) Potential of LAMP for detection of plant pathogens. CAB Rev 3(066):1–7

    Google Scholar 

  • Torres E, Bertolini E, Cambra M, Monton C, Martin MP (2005) Real time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol Cell Probes 19(5):334–340

    CAS  PubMed  Google Scholar 

  • Ud Nabi S, Madhupriya DD, Rao GP, Baranwal VK, Sharma P (2015) Characterization of phytoplasmas associated with sesame (Sesamum indicum) phyllody disease in North India utilizing multilocus genes and RFLP analysis. Indian Phytopathol 68(1):112–119

    Google Scholar 

  • Valarmathi P, Rabindran R, Velazhahan R, Suresh S, Robin S (2013) First report of rice orange leaf disease phytoplasma (16 SrI) in rice (Oryza sativa) in India. Aust Plant Dis Notes 8(1):141–143

    Google Scholar 

  • Valasevich N, Schneider B (2017) Rapid detection of “Candidatus Phytoplasma mali” by recombinase polymerase amplification assays. J Phytopathol 165:762–770. https://doi.org/10.1111/jph.12616

    Article  CAS  Google Scholar 

  • Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci USA 100:4504–4509

    PubMed  PubMed Central  Google Scholar 

  • Velásquez AC, Castroverde CD, He SY (2018) Plant-Pathogen Warfare under Changing Climate Conditions. Curr Biol 28(10):R619–R634. https://doi.org/10.1016/j.cub.2018.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villamor DEV, Eastwell KC (2019) Multilocus characterization, gene expression analysis of putative immunodominant protein coding regions, and development of recombinase polymerase amplification assay for detection of 'Candidatus Phytoplasma Pruni’ in Prunus avium. Phytopathology 109(6):983–992. https://doi.org/10.1094/PHYTO-09-18-0326-R

    Article  CAS  PubMed  Google Scholar 

  • Vu NT, Pardo JM, Alvarez E, Le HH, Wyckhuys K, Nguyen KL et al (2016) Establishment of a loop-mediated isothermal amplification (LAMP) assay for the detection of phytoplasma-associated. Appl Biol Chem 59(2):151–156

    CAS  Google Scholar 

  • Wambua L, Schneider B, Okwaro A, Wanga JO, Imali O, Wambua PN et al (2017) Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae. Mol Cell Probes 35:44–56

    CAS  PubMed  Google Scholar 

  • Wang H, Ye X, Li J, Tan B, Chen P, Cheng J et al (2018) Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by ‘Candidatus Phytoplasma ziziphi’. Gene 665:82–95

    CAS  PubMed  Google Scholar 

  • Wei W, Davis RE, Lee M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57(8):1855–1867

    CAS  PubMed  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    CAS  PubMed  Google Scholar 

  • Wittwer CT, Herrmann MG, Elenitoba-Johnson GCN, Myint KS, (2001) Real time multiplex PCR assays. Methods 25(4):430–442

    CAS  PubMed  Google Scholar 

  • Wongkaew P (2012) Sugarcane white leaf disease characterization, diagnosis development, and control strategies. Funct Plant Sci Biotechnol 6(2):73–84

    Google Scholar 

  • Yankey EN, Swarbrick P, Dickinson M, Tomlinson J, Boonham N, Nipah JO et al (2011) Improving molecular diagnostics for the detection of lethal disease phytoplasma of coconut in Ghana. Bull Insectol 64:S47–S48

    Google Scholar 

  • Youssef SA, Sayed Y, Hassan OS, Safwat G, Shalaby AA (2017) Universal and specific 16S–23Sr RNA PCR primers for identification of phytoplasma associated with sesame in Egypt. Int J Adv Res Biol Sci 4:191–200

    CAS  Google Scholar 

  • Zhou Y, Van Leeuwen SK, Pieterse CM, Bakker PA, Van Wees SC (2019) Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. Eur J Plant Pathol 154(1):31–42

    CAS  Google Scholar 

  • Zikeli K, Berwarth C, Knierim D, Hoffmann C, Maixner M, Winter S, Jelkmann W (2018) Application of next-generation sequencing for simultaneous detection of viruses, viroids and phytoplasmas in grapevine and fruit trees. In: 11th Young Scientists Meeting, Braunschweig pp 14–16.

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

RM conceptualized the ideas, obtained project funds and edited the MS. SN conducted the experiments, collected the literature and wrote the MS.

Corresponding author

Correspondence to R. Manimekalai.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S., Manimekalai, R. Phytoplasma diseases of plants: molecular diagnostics and way forward. World J Microbiol Biotechnol 37, 102 (2021). https://doi.org/10.1007/s11274-021-03061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03061-y

Keywords

Navigation