Skip to main content
Log in

Recent progress on bio-succinic acid production from lignocellulosic biomass

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Succinic acid is a valuable bulk chemical, which has been extensively applied in food, medicine, surfactants and biodegradable plastics industries. As a substitute for chemical raw material, bio-based succinic acid production has received increasing attention due to the depletion of fossil fuels and environmental issues. Meanwhile, the effective bioconversion of lignocellulosic biomass has always been a hot spot of interest owning to the advantages of low expense, abundance and renewability. Consolidated bioprocessing (CBP) is considered to be an alternative approach with outstanding potential, as CBP can not only improve the product yield and productivity, but also reduce the equipment and operating costs. In addition, the current emerging microbial co-cultivation systems provide strong competitiveness for lignocellulose utilization through CBP. This article comprehensively discusses different strategies for the bioconversion of lignocellulose to succinic acid. Based on the principles and technical concepts of CBP, this review focuses on the progress of succinic acid production under different CBP strategies (metabolic engineering based and microbial co-cultivation based). Moreover, the main challenges faced by CBP-based succinic acid fermentation are analyzed, and the future direction of CBP production is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhtar J, Idris A (2017) Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renew Energy 114:917–923

    Article  CAS  Google Scholar 

  • Akhtar J, Hassan N, Idris A, Ngadiman NHA (2019) Optimization of simultaneous saccharification and fermentation process conditions for the production of succinic acid from oil palm empty fruit bunches. J Wood Chem Technol 40:136–145

    Article  Google Scholar 

  • Akhtar J, Idris A, Abd Aziz R (2014) Recent advances in production of succinic acid from lignocellulosic biomass. Appl Microbiol Biotechnol 98:987–1000. https://doi.org/10.1007/s00253-013-5319-6

    Article  CAS  PubMed  Google Scholar 

  • Alcantara J, Mondala A, Hughey L, Shields S (2017) Direct succinic acid production from minimally pretreated biomass using sequential solid-state and slurry fermentation with mixed fungal cultures. Fermentation. https://doi.org/10.3390/fermentation3030030

    Article  Google Scholar 

  • Andersson C, Hodge D, Berglund KA, Rova U (2010) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23:381–388

    Article  Google Scholar 

  • Argyros DA et al (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294

    Article  CAS  Google Scholar 

  • Banerjee S, Mishra G, Roy A (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol Bioprocess Eng 24:713–733

    Article  CAS  Google Scholar 

  • Borges ER, Pereira N (2011) Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 38:1001

    Article  CAS  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489. https://doi.org/10.1016/j.tibtech.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  • Brown SD et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Nat Acad Sci 108:13752–13757

    Article  CAS  Google Scholar 

  • Bu J, Yan X, Wang YT, Zhu SM, Zhu MJ (2019) Co-production of high-gravity bioethanol and succinic acid from potassium peroxymonosulfate and deacetylation sequentially pretreated sugarcane bagasse by simultaneous saccharification and co-fermentation. Energy Convers Manag 186:131–139

    Article  CAS  Google Scholar 

  • Chen KQ, Li J, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ (2011) Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Biores Technol 102:1704–1708

    Article  CAS  Google Scholar 

  • Davison SA, Den Haan R, Van Zyl WH (2016) Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 100:1–14

    Article  Google Scholar 

  • Devarapalli M, Atiyeh HK (2015) A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J 2:268–280

    Article  CAS  Google Scholar 

  • Dong JJ, Ding JC, Zhang Y, Ma L, Xu GC, Han RZ, Ni Y (2016) Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864. Fems Microbiol Lett. https://doi.org/10.1093/femsle/fnw003

    Article  PubMed  Google Scholar 

  • Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505

    Article  CAS  Google Scholar 

  • Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S (2016) Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact 15:1–11

    Article  Google Scholar 

  • Garlapati VK, Chandel AK, Kumar SPJ, Sharma S, Sevda S, Ingle AP, Pant D (2020) Circular economy aspects of lignin: towards a lignocellulose biorefinery. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.109977

    Article  Google Scholar 

  • Grange DCL, Haan RD, Zyl WHV (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208

    Article  CAS  Google Scholar 

  • Jawed K, Mattheos SS, Koffas MAG (2019) Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun 9:e00095. https://doi.org/10.1016/j.mec.2019.e00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  Google Scholar 

  • Li J et al (2011) A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Biores Technol 102:6147–6152

    Article  CAS  Google Scholar 

  • Li Q et al (2010) Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Biores Technol 101:3292–3294

    Article  CAS  Google Scholar 

  • Liu R et al (2013) Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Biores Technol 149:84–91

    Article  CAS  Google Scholar 

  • Lu J et al (2020) Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system. ACS Sustain Chem Eng 8:9035–9045. https://doi.org/10.1021/acssuschemeng.0c01865

    Article  CAS  Google Scholar 

  • Lynd LR, Elamder RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58:741–761

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. https://doi.org/10.1016/j.copbio.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  Google Scholar 

  • Margeot A, Hahn-Hagerdal BR, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  Google Scholar 

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation–a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065. https://doi.org/10.3390/md12021043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TAD et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438

    Article  CAS  Google Scholar 

  • Olson DG, Mcbride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  CAS  Google Scholar 

  • Qi et al (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371

    Article  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  CAS  Google Scholar 

  • Tansengco ML, Tokiwa YY (1997) Thermophilic microbial degradation of polyethylene succinate. World J Microbiol Biotechnol 14:133–138

    Article  Google Scholar 

  • Treebupachatsakul T et al (2016) Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. J BioSci Bioeng 121:27–35

    Article  CAS  Google Scholar 

  • Valles A, Lvarez-Hornos FJ, Martínez-Soria V, Marzal P, Gabaldón C (2020) Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw. Fuel 282:118831

    Article  CAS  Google Scholar 

  • Ventorino V et al (2017) Bio-based succinate production from Arundo donax hydrolysate with the new natural succinic acid-producing strain Basfia succiniciproducens BPP7. BioEnergy Res 10:488–498

    Article  CAS  Google Scholar 

  • Wei H-L, Wang Y-T, Hong Y-Y, Zhu M-J (2020) Pretreatment of rice straw with recycled ionic liquids by phase-separation process for low‐cost biorefinery. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2007

    Article  PubMed  Google Scholar 

  • Yang X, Xu M, Yang ST (2015) Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab Eng 32:39–48

    Article  Google Scholar 

  • Yasuda M, Ishii Y, Ohta K (2014) Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: Pretreatment, saccharification, and fermentation. Biotechnol Bioprocess Eng 19:943–950

    Article  CAS  Google Scholar 

  • You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YHP (2012) Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437–1444

    Article  CAS  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254

    Article  CAS  Google Scholar 

  • Zhang XD (2013) Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Biores Technol 148:15–23

    Article  Google Scholar 

  • Zheng P, Fang L, Xu Y, Dong JJ, Ni Y, Sun ZH (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Biores Technol 101:7889–7894

    Article  CAS  Google Scholar 

  • Zheng Z, Chen T, Zhao M, Wang Z, Zhao X (2012) Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 11:37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0902200), National Natural Science Foundation of China (Grant No.21978130, No.21706125, No.22008113), Natural Science Foundation of Jiangsu Province (Grant No. BK20170993), China Postdoctoral Science Foundation (Grant No.2020M671465), Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Open Funding Project for University Students’ Innovation, Entrepreneurship and Practice (Grant No. 2020DC0007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenming Zhang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Li, J., Gao, H. et al. Recent progress on bio-succinic acid production from lignocellulosic biomass. World J Microbiol Biotechnol 37, 16 (2021). https://doi.org/10.1007/s11274-020-02979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02979-z

Keywords

Navigation