Skip to main content

Advertisement

Log in

A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanide is a nitrile which is used extensively in many industries like jewelry, mining, electroplating, plastics, dyes, paints, pharmaceuticals, food processing, and coal coking. Cyanides pose a serious health hazard due to their high affinity towards metals and cause malfunction of cellular respiration by inhibition of cytochrome c oxidase. This inhibition ultimately leads to histotoxic hypoxia, increased acidosis, reduced the functioning of the central nervous system and myocardial activity. Different physicochemical processes including oxidation by hydrogen peroxide, alkaline chlorination, and ozonization have been used to reduce cyanide waste from the environment. Microbial cyanide degradation which is considered as one the most successful techniques is used to take place through different biochemical/metabolic pathways involving reductive, oxidative, hydrolytic or substitution/transfer reactions. Groups of enzymes involved in microbial degradation are cyanidase, cyanide hydratase, formamidase, nitrilase, nitrile hydratase, cyanide dioxygenase, cyanide monooxygenase, cyanase and nitrogenase. In the future, more advancement of omics technologies and protein engineering will help us to recoup the environment from cyanide effluent. In this review, we have discussed the origin and environmental distribution of cyanide waste along with different bioremediation pathways and enzymes involved therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acera F, Carmona MI, Castillo F, Quesada A, Blasco R (2017) A cyanide-induced 3-cyanoalanine nitrilase in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes strain CECT 5344. Appl Environ Microbiol 83(9):e00089-17

    PubMed  PubMed Central  Google Scholar 

  • Aichi M, Nishida I, Omata T (1998) Molecular cloning and characterization of a cDNA encoding cyanase from Arabidopsis thaliana. Plant Cell Physiol 39:S135

    Google Scholar 

  • Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21:501–511

    CAS  PubMed  Google Scholar 

  • Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450

    CAS  PubMed  Google Scholar 

  • Alexander K, Volini M (1987) Properties of an Escherichia coli rhodanese. J Biol Chem 262:6595–6604

    CAS  PubMed  Google Scholar 

  • Alphey MS, Williams RAM, Mottram JC et al (2003) The crystal structure of leishmania major 3-mercaptopyruvate sulfurtransferase A three-domain architecture with a serine protease-like triad at the active site. J Biol Chem 278:48219–48227

    CAS  PubMed  Google Scholar 

  • Anderson PM, Little RM (1986) Kinetic properties of cyanase. Biochemistry 25:1621–1626

    CAS  PubMed  Google Scholar 

  • Anderson PM, Sung Y, Fuchs JA (1990) The cyanase operon and cyanate metabolism. FEMS Microbiol Lett 87:247–252

    CAS  Google Scholar 

  • Aronstein BN, Maka A, Srivastava VJ (1994) Chemical and biological removal of cyanides from aqueous and soil-containing systems. Appl Biochem Microbiol 41:700–707

    CAS  Google Scholar 

  • ATSDR (2016) Releases report about exposure to PCBs at Oak Ridge Reservation, TN

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophyticbacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    CAS  PubMed  Google Scholar 

  • Barclay M, Hart A, Knowles CJ et al (1998) Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Microb Technol 22:223–231

    CAS  Google Scholar 

  • Basile LJ, Willson RC, Sewell BT, Benedik MJ (2008) Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol 80(3):427–435

    CAS  PubMed  Google Scholar 

  • Baxter J, Cummings SP (2006) The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek 90:1–17

    CAS  PubMed  Google Scholar 

  • Bhalla TC, Sharma N, Bhatia RK (2012) Microbial degradation of cyanides and nitriles. In: Satyanarayana T, Johri B, Prakash A (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 569–587

    Google Scholar 

  • Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol 185(4):925–946

    CAS  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily: sequence–structure–function relations. EMBO Rep 3:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botz MM (2001) Overview of cyanide treatment methods, mining environmental management. Mining Journal Ltd., London, pp 28–30

    Google Scholar 

  • Botz MM, Mudder TI, Akcil A (2015) Cyanide treatment: physical, chemical and biological processes. In: Adams M (ed) Advances in gold ore processing. Elsevier, Amsterdam, pp 672–700

    Google Scholar 

  • Cabello P, Luque-Almagro VM, Olaya-Abril A et al (2018) Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiol Lett 365(6):fny032

    PubMed Central  Google Scholar 

  • Campos MG, Pereira P, Roseiro JC (2006) Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzyme Microb Technol 38:848–854

    CAS  Google Scholar 

  • Castrıc PA, Farnden KJF, Conn EE (1972) Cyanide metabolism in higher plants. V. The formation of asparagine from Ii-cyanoalanine. Arch Biochem Biophys 152:62–69

    PubMed  Google Scholar 

  • Chaudhary M, Gupta R (2012) Cyanide detoxifying enzyme: rhodanese. Curr Biotechnol 1:327–335

    CAS  Google Scholar 

  • Cipollone R, Bigotti MG, Frangipani E et al (2004) Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 325:85–90

    CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Frangipani E, Visca P (2006) Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63:942–949

    CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P (2008) Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa rhodanese. J Mol Microbiol Biotechnol 15:199–211

    CAS  PubMed  Google Scholar 

  • Cluness MJ, Turner PD, Clements E et al (1993) Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. Microbiology 139:1807–1815

    CAS  Google Scholar 

  • Cobbett CS, Goldsbrough PB (2000) Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 247–271

    Google Scholar 

  • Crum MA, Park JM, Sewell BT, Benedik MJ (2015) C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization. J Appl Microbiol 118:881–889

    CAS  PubMed  Google Scholar 

  • Crum MA, Sewell BT, Benedik MJ (2016) Bacillus pumilus cyanide dihydratase mutants with higher catalytic activity. Front Microbiol. 7:1264

    PubMed  PubMed Central  Google Scholar 

  • Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 163:1–11

    PubMed  Google Scholar 

  • Dent KC, Weber BW, Benedik MJ, Sewell BT (2009) The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Appl Microbiol Biotechnol 82:271–278

    CAS  PubMed  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236

    CAS  PubMed  Google Scholar 

  • Ebel M, Evangelou MWH, Schaeffer A (2007) Cyanide phytoremediation by water hyacinths (Eichhornia crassipes). Chemosphere 66:816–823

    CAS  PubMed  Google Scholar 

  • Elleuche S, Pöggeler S (2008) A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol 45:1458–1469

    CAS  PubMed  Google Scholar 

  • Emmanuel OA, Emmanuel NU (1981) Characterization of rhodanese from cassava leaves and tubers. J Exp Bot 32(5):1021–1027

    Google Scholar 

  • Ezzi MI, Pascual JA, Gould BJ, Lynch JM (2003) Characterisation of the rhodanese enzyme in Trichoderma spp. Enzyme Microb Technol 32:629–634

    CAS  Google Scholar 

  • Fallon RD (1992) Evidence of a hydrolytic route for anaerobic cyanide degradation. Appl Environ Microbiol 58(9):3163–3164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez RF, Dolghih E, Kunz DA (2004) Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 70:121–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frapolli M, Pothier JF, Défago G, Moënne-Loccoz Y (2012) Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads. Mol Phylogenet Evol 63:877–890

    CAS  PubMed  Google Scholar 

  • Fry WE, Millar RL (1972) Cyanide degradion by an enzyme from Stemphylium loti. Arch Biochem Biophys 151:468–474

    CAS  PubMed  Google Scholar 

  • Gliubich F, Gazerro M, Zanotti G et al (1996) Active site structural features for chemically modified forms of rhodanese. J Biol Chem 271:21054–21061

    CAS  PubMed  Google Scholar 

  • Guilloton MB, Korte JJ, Lamblin AF et al (1992) Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 267:3731–3734

    CAS  PubMed  Google Scholar 

  • Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13

    CAS  PubMed  Google Scholar 

  • Hannestad U, Mårtensson J, Sjödahl R, Sörbo B (1981) 3-Mercaptolactate cysteine disulfiduria: biochemical studies on affected and unaffected members of a family. Biochem Med 26:106–114

    CAS  PubMed  Google Scholar 

  • Harano Y, Suzuki I, Maeda S et al (1997) Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol 179:5744–5750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy RWF, Knight E Jr (1967) ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta (BBA)-Enzymol 139:69–90

    CAS  Google Scholar 

  • He J, Kappler A (2017) Recovery of precious metals from waste streams. Microb Biotechnol 10(5):1194–1198

    PubMed  PubMed Central  Google Scholar 

  • Huang H, Yie S, Liu Y et al (2016) Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca). Sci Rep 6:34700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas MJ, Luque-Almagro VM, Martínez-Luque M et al (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc Trans 34(1):152–155

    CAS  PubMed  Google Scholar 

  • Ibáñez MI, Cabello P, Luque-Almagro VM, Sáez LP, Olaya A, Sánchez de Medina V et al (2017) Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). PLoS ONE 12(3):e0172908

    PubMed  PubMed Central  Google Scholar 

  • Ingvorsen K, Højer-Pedersen B, Godtfredsen SE (1991) Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl Environ Microbiol 57:1783–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jandhyala DM, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ (2003) CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl Environ Microbiol 69:4794–4805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jandhyala DM, Willson RC, Sewell BT, Benedik MJ (2005) Comparison of cyanide-degrading nitrilases. Appl Microbiol Biotechnol 68(3):327–335

    CAS  PubMed  Google Scholar 

  • Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172:224–228

    CAS  PubMed  Google Scholar 

  • Kang DH, Hong LY, Paul Schwab A, Banks MK (2007) Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants. Chemosphere 69:1492–1498

    CAS  PubMed  Google Scholar 

  • Kebeish R, Al-Zoubi O (2017) Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis. Environ Sci Pollut Res Int 24(12):11825–11835

    CAS  PubMed  Google Scholar 

  • Kelly M (1968) The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparation from Azotobacter chroococcum and the effects of inhibitors. Biochem J 107:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth RA, Kalantar-Zadeh K, Wang Z et al (2013) Protein carbamylation predicts mortality in ESRD. J Am Soc Nephrol 24:853–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koksunan S, Vichitphan S, Laopaiboon L et al (2013) Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system. J Microbiol Biotechnol 23:572–578

    CAS  PubMed  Google Scholar 

  • Kumar V, Kumar V, Bhalla TC (2013) In vitro cyanide degradation by Serretia marcescens RL2b. Int J Environ Sci 3:1969

    Google Scholar 

  • Kumar R, Saha S, Dhaka S et al (2017) Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosystem Eng 20:28–40

    CAS  Google Scholar 

  • Kunz DA, Nagappan O, Silva-Avalos J, Delong GT (1992) Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl Environ Microbiol 58:2022–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha M, Kumar V, Mahajan R et al (2018) Molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with cyanide biodegradation by Serratia marcescens. Arch Microbiol. https://doi.org/10.1007/s00203-018-1524-0

    Article  PubMed  Google Scholar 

  • Lamblin AF, Fuchs JA (1994) Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation. J Bacteriol 176:6613–6622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    CAS  PubMed  Google Scholar 

  • Liu JK, Liu CH, Lin CS (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc Natl Sci Counc Repub China B 21:37–42

    CAS  PubMed  Google Scholar 

  • Lovecka P, Thimova M, Grznarova P et al (2015) Study of Cytotoxic Effects of Benzonitrile pesticides. Biomed Res Int 2015:381264

    PubMed  PubMed Central  Google Scholar 

  • Luque-Almagro VM, Huertas M-J, Sáez LP et al (2008) Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl Environ Microbiol 74:6280–6288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luque-Almagro VM, Blasco R, Martínez-Luque M et al (2011) Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochem Soc Trans 39(1):269–274

    CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Moreno-Vivián C, Roldán MD (2016) Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 38:9–13

    CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Cabello P, Sáez LP, Olaya-Abril A, Moreno-Vivián C, Olden MD (2018) Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biotechnol 102(3):1067–1074

    CAS  PubMed  Google Scholar 

  • Maniyam MN, Sjahrir F, Ibrahim AL, Cass AEG (2013) Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia 68(2):177–185

    Google Scholar 

  • Manso Cobos I, Ibáñez García MI, de la Peña Moreno F et al (2015) Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity. Microb Cell Fact 14:77

    PubMed  PubMed Central  Google Scholar 

  • Martínková L, Veselá AB, Rinágelová A, Chmátal M (2015) Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide. Appl Microbiol Biotechnol 99(21):8875–8882

    PubMed  Google Scholar 

  • Martínková L, Rucká L, Nešvera J, Pátek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33(1):8

    PubMed  Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) β-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    CAS  PubMed  Google Scholar 

  • Mccutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 663–694

    Google Scholar 

  • Mekuto L, Alegbeleye OO, Ntwampe SKO et al (2016) Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions. 3 Biotech 6:173

    PubMed  PubMed Central  Google Scholar 

  • Meyers PR, Gokool P, Rawlings DE, Woods DR (1991) An efficient cyanide-degrading Bacillus pumilus strain. Microbiology 137:1397–1400

    CAS  Google Scholar 

  • Meyers PR, Rawlings DE, Woods DR, Lindsey GG (1993) Isolation and characterization of a cyanide dihydratase for Bacillus pumilus C1. J Bacteriol 175:6105–6112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65:1199–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13:337–346

    Google Scholar 

  • Myers DF, Fry WE (1978) Enzymatic release and metabolism of hydrogen cyanide in sorghum infected with Gloeocercospora sorghi. Phytopathology 68:1717–1722

    CAS  Google Scholar 

  • Nandi DL, Horowitz PM, Westley J (2000) Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol 32:465–473

    CAS  PubMed  Google Scholar 

  • Nolan LM, Harnedy PA, Turner P et al (2003) The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol Lett 221:161–165

    CAS  PubMed  Google Scholar 

  • Ogata K, Volini M (1990) Mitochondrial rhodanese: membrane-bound and complexed activity. J Biol Chem 265:8087–8093

    CAS  PubMed  Google Scholar 

  • O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes—a comparative study. J Appl Microbiol 95(6):1161–1174

    PubMed  Google Scholar 

  • Oyedeji O, Awojobi KO, Okonji RE, Olusola OO (2013) Characterization of rhodanese produced by Pseudomonas aeruginosa and Bacillus brevis isolated from soil of cassava processing site. Afr J Biotechnol 12(10):1104–1114

    CAS  Google Scholar 

  • Pagani S, Bonomi F, Cerletti P (1984) Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. Eur J Biochem 142:361–366

    CAS  PubMed  Google Scholar 

  • Panter KE (2018) Cyanogenic glycoside–containing plants. In: Gupta RC (ed) Veterinary toxicology, 3rd edn. Elsevier, Amsterdam, pp 935–940

    Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Sewell BT, Benedik MJ (2017) Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 101:3029–3042

    CAS  PubMed  Google Scholar 

  • Paschka MG, Ghosh RS, Dzombak DA (1999) Potential water-quality effects from iron cyanide anticaking agents in road salt. Water Environ Res 71:1235–1239

    CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowski M, Schonfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621

    CAS  PubMed  Google Scholar 

  • Rinágelová A, Kaplan O, Veselá AB et al (2014) Cyanide hydratase from Aspergillus niger K10: overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Process Biochem 49:445–450

    Google Scholar 

  • Robson RL, Jones R, Robson RM et al (2015) Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PLoS ONE 10:e0127997

    PubMed  PubMed Central  Google Scholar 

  • Samiotakis M, Ebbs SD (2004) Possible evidence for transport of an iron cyanide complex by plants. Environ Pollut 127:169–173

    CAS  PubMed  Google Scholar 

  • Sewell BT, Berman MN, Meyers PR et al (2003) The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11:1413–1422

    CAS  PubMed  Google Scholar 

  • Sharma M, Sharma NN, Bhalla TC (2005) Hydroxynitrile lyases: at the interface of biology and chemistry. Enzyme Microb Technol 37:279–294

    CAS  Google Scholar 

  • Shirai R (1978) Study on cyanide metabolizing activity in mesocarp of Rosaceae. J Coll Arts Sci Chiba Univ B-11:11–33

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Google Scholar 

  • Singh U, Arora NK, Sachan P (2018) Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Braz J Microbiol 49(1):38–44

    CAS  PubMed  Google Scholar 

  • Sörbo B (1957) Enzymic transfer of sulfur from mercaptopyruvate to sulfite or sulfinates. Biochim Biophys Acta 24:324–329

    PubMed  Google Scholar 

  • Sung Y-C, Fuchs JA (1992) The Escherichia coli K-12 cyn operon is positively regulated by a member of the lysR family. J Bacteriol 174:3645–3650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sunderland, Sinauer, p 690

    Google Scholar 

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108

    CAS  PubMed  Google Scholar 

  • Tomati U, Federıcı G, Cannella C (1972) Rhodanese activity in chloroplasts. Physiol Chem Physics 4:193–196

    CAS  Google Scholar 

  • Trapp S, McFarlane C (eds) (1995) Plant contamination: modeling and simulation of organic processes. Lewis, Boca Raton, p 254

    Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  Google Scholar 

  • Wang P, VanEtten HD (1992) Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun 187:1048–1054

    CAS  PubMed  Google Scholar 

  • Wang SF, Volini M (1968) Studies on the active site of rhodanese. J Biol Chem 243:5465–5470

    CAS  PubMed  Google Scholar 

  • Wang L, Watermeyer JM, Mulelu AE, Sewell BT, Benedik MJ (2012) Engineering pH-tolerant mutants of a cyanide dihydratase. Appl Microbiol Biotechnol 94(1):131–140

    CAS  PubMed  Google Scholar 

  • Watanabe A, Yano K, Ikebukuro K, Karube I (1998) Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144:1677–1682

    CAS  PubMed  Google Scholar 

  • White DM, Schnabel W (1998) Treatment of cyanide waste in a sequencing batch biofilm reactor. Water Res 32:254–257

    CAS  Google Scholar 

  • Williams RAM, Kelly SM, Mottram JC, Coombs GH (2003) 3-Mercaptopyruvate sulfurtransferase of leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J Biol Chem 278:1480–1486

    CAS  PubMed  Google Scholar 

  • Yanase H, Sakamoto A, Okamoto K et al (2000) Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl Microbiol Biotechnol 53:328–334

    CAS  PubMed  Google Scholar 

  • Young RA (1954) Flavor qualities of some edible oriental bamboos. Econ Bot 8:377–386

    Google Scholar 

  • Yu XZ, Gu JD (2007) Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal. Exotoxicol Environ Saf 67:254–259

    CAS  Google Scholar 

  • Yu XZ, Gu JD (2009) Uptake, accumulation and metabolic response of ferricyanide in weeping willows. J Environ Monit 11(1):145–152

    CAS  PubMed  Google Scholar 

  • Yu X, Trapp S, Zhou P et al (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126

    CAS  PubMed  Google Scholar 

  • Yu X, Trapp S, Zhou P (2005a) Phytotoxicity of cyanide to weeping willow trees. Environ Sci Pollut Res 12:109–113

    CAS  Google Scholar 

  • Yu X, Trapp S, Zhou P, Hu H (2005b) The effect of temperature on the rate of cyanide metabolism of two woody plants. Chemosphere 59:1099–1104

    CAS  PubMed  Google Scholar 

  • Zagrobelny M, Bak S, Olsen CE, Møller BL (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem Mol Biol 37:1189–1197

    CAS  PubMed  Google Scholar 

  • Zagrobelny M, Scheibye-Alsing K, Jensen NB et al (2009) 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. BMC Genom 10:574

    Google Scholar 

Download references

Acknowledgements

We are thankful to Prof Ian S. Maddox, who has kindly invited us to contribute this article and also for his encouragement and advice since the invitation. We are also thankful to reviewers and editors for their valuable suggestions. Research in MS lab is supported by Uttar Pradesh Council of Science and Technology (Govt. of Uttar Pradesh province, India). Research in YA lab is supported by Indian Council of Medical Research and Department of Biotechnology (Ministry of Science & Technology, Govt. of India). SC gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India for an extramural research grant. Authors would like to thank the technical English translation expert Dr K B S Krishna, Assistant Professor, Department of English and European Languages, Central University of Himachal Pradesh, Dharamshala for his inputs and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuf Akhter or Subhankar Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Akhter, Y. & Chatterjee, S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J Microbiol Biotechnol 35, 70 (2019). https://doi.org/10.1007/s11274-019-2643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2643-8

Keywords

Navigation