Skip to main content

Advertisement

Log in

Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    CAS  PubMed  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Shiguo Z et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    CAS  PubMed  Google Scholar 

  • Baldisserotto C, Giovanardi M, Ferroni L, Pancaldi S (2014) Growth, morphology and photosynthetic responses of Neochloris oleoabundans during cultivation in a mixotrophic brackish medium and subsequent starvation. Acta Physiol Plant 36:461–472

    CAS  Google Scholar 

  • Baldisserotto C, Popovich C, Giovanardi M, Sabia A, Ferroni L, Constenla D, Leonardi P, Pancaldi S (2016) Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production. Algal Res 16:255–265

    Google Scholar 

  • Barragán C, Wetzel CE, Ector L (2018) A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment. J App Phycol 30:1095–1113

    Google Scholar 

  • Barsanti L, Gualtieri P (2014) Photosynthesis. In: Algae—anatomy, biochemistry, and biotechnology. 2nd edn, CrC Press, Boca Raton, pp 141–172

    Google Scholar 

  • Bates SS, Trainer VL (2006) The ecology of harmful diatoms. In: Ecology of harmful algae. Springer, Berlin, pp 81–93

    Google Scholar 

  • Bismuto A, Setaro A, Maddalena P, Stefano LD, Stefano MD (2008) Marine diatoms as optical chemical sensors: a time-resolved study. Sens Actuators B Chem 130:396–399

    CAS  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    CAS  PubMed  Google Scholar 

  • Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82:195–201

    CAS  PubMed  Google Scholar 

  • Brunet C, Lavaud J (2010) Can the xanthophyll cycle help extract the essence of the microalgal functional response to a variable light environment? J Plankton Res 32:1609–1617

    Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790

    PubMed  PubMed Central  Google Scholar 

  • Caron L, Berkaloff C, Duval J-C, Jupin H (1987) Chlorophyll fluorescence transients from the diatom Phaeodactylum tricornutum: relative rates of cyclic phosphorylation and chlororespiration. Photosynth Res 11:131–139

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2018) Kingdom chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357

    CAS  PubMed  Google Scholar 

  • Chandrasekaran R, Barra L, Carillo S, Caruso T, Corsaro MM, Dal Piaz F, Graziani G et al (2014) Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi. J Biotechnol 192:114–122

    CAS  PubMed  Google Scholar 

  • Chen YC (2012) The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem 131:211–219

    CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    CAS  PubMed  Google Scholar 

  • Clavero E, Hernández-Mariné M, Grimalt JO, Garcia-Pichel F (2000) Salinity tolerance of diatoms from thalassic hypersaline environments. J Phycol 36:1021–1034

    Google Scholar 

  • d’Ippolito G, Sardo A, Paris D, Vella FM, Adelfi MG, Botte P, Gallo C, Fontana A (2015) Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol Biofuels 8:1–28

    Google Scholar 

  • Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Voytas DF (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    CAS  PubMed  Google Scholar 

  • del Pilar Sánchez-Saavedra M, Maeda-Martínez AN, Acosta-Galindo S (2016) Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea. J Appl Phycol 28:839–847

    Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179

    CAS  PubMed  Google Scholar 

  • Depauw FA, Rogato A, Ribera d’Alcalá M, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591

    CAS  PubMed  Google Scholar 

  • Dong HP, Dong YL, Cui L, Balamurugan S, Gao J, Lu SH, Jiang T (2016) High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. BMC Genom 17:994

    Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  PubMed  Google Scholar 

  • Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O et al (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunato AE, Jaubert M, Enomoto G, Bouly JP, Raniello R, Thaler M, Carbone A et al (2016) Diatom phytochromes reveal the existence of far-red light based sensing in the ocean. Plant Cell 28:616–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel J, Wess C, Vyverman W, Pohnert G (2014) Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography. J Chromatogr B 951:58–61

    Google Scholar 

  • Fu W, Wichuk K, Brynjólfsson S (2015) Developing diatoms for value-added products: challenges and opportunities. New Biotechnol 32:547–551

    CAS  Google Scholar 

  • Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, Pancaldi S (2013) Morpho-physiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma 250:161–174

    PubMed  Google Scholar 

  • Granum E, Raven JA, Leegood RC (2005) How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? J Bot 83:898–908

    CAS  Google Scholar 

  • Grouneva I, Rokka A, Aro E-M (2011) Thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353

    CAS  PubMed  Google Scholar 

  • Guo B, Liu B, Yang B, Sun P, Lu X, Liu J, Chen F (2016) Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar Drugs 14:125

    PubMed Central  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energy Rev 14:1037–1047

    CAS  Google Scholar 

  • Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microbial Cell Fact 10:81

    CAS  Google Scholar 

  • Hildebrand D, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240

    CAS  Google Scholar 

  • Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49

    PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as a feedstocks for biofuel production: perspective and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  • Huang W, Daboussi F (2017) Genetic and metabolic engineering in diatoms. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2016.0411

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (1999) Activation of diadinoxanthin deepoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82

    CAS  Google Scholar 

  • Jaubert M, Bouly JP, d’Alcalà MR, Falciatore A (2017) Light sensing and responses in marine microalgae. Curr Opin Plant Biol 37:70–77

    CAS  PubMed  Google Scholar 

  • Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4:3930–3941

    CAS  Google Scholar 

  • Joseph MM, Renjith KR, John G, Nair S, Chandramohanakumar N (2017) Biodiesel prospective of five diatom strains using growth parameters and fatty acid profiles. Biofuels 8:81–89

    CAS  Google Scholar 

  • Jungandreas A, Costa BS, Jakob T, Von Bergen M, Baumann S, Wilhelm C (2014) The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS ONE 9:e99727

    PubMed  PubMed Central  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya A, Saitoh T (2002) Blue-light-control of the uptake of amino acids and of ammonia in Chlorella mutants. Physiol Plant 116:248–254

    CAS  PubMed  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Kopalová K, Elster J, Nedbalová L, van de Vijver B (2009) Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Res 24:113–122

    Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    PubMed  Google Scholar 

  • Kroth P (2007) Molecular biology and the biotechnological potential of diatoms. Transgenic microalgae as green cell factories. Springer, New York, pp 23–33

    Google Scholar 

  • Lauritano C, Martín J, de la Cruz M, Reyes F, Romano G, Ianora A (2018) First identification of marine diatoms with anti-tuberculosis activity. Sci Rep 8:2284

    PubMed  PubMed Central  Google Scholar 

  • Lavaud J (2012) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotechonol 1:267–287

    Google Scholar 

  • Lavaud J, Van Gorkom HJ, Etienne AL (2002) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74:51–59

    CAS  PubMed  Google Scholar 

  • Lebeau T, Robert JM (2003a) Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl Microbiol Biotechnol 60:612–623

    CAS  PubMed  Google Scholar 

  • Lebeau T, Robert JM (2003b) Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl Microbiol Biotechnol 60:624–632

    CAS  PubMed  Google Scholar 

  • Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J (2013) High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865

    CAS  PubMed  Google Scholar 

  • Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG et al (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol 214:205–218

    CAS  PubMed  Google Scholar 

  • Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124

    CAS  PubMed  Google Scholar 

  • Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB (2013) The multiple roles of histidine in protein interactions. Chem Cen J 7:44

    Google Scholar 

  • Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246

    Google Scholar 

  • Lobo EA, Heinrich CG, Schuch M, Wetzel CE, Ector L (2016) Diatoms as bioindicators in rivers. In: River algae. Springer, Cham, pp 245–271

    Google Scholar 

  • Lopez PJ, Descles J, Allen AE, Bowler C (2005) Prospects in diatom research. Curr Opin Biotechnol 16:180–186

    CAS  PubMed  Google Scholar 

  • Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T (2018) Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol 50:111–120

    CAS  PubMed  Google Scholar 

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives: a mini review. Energy 78:104–113

    CAS  Google Scholar 

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P et al (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113(11):E1516–E1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotech Adv 31:1532–1542

    CAS  Google Scholar 

  • Martínez Andrade KA, Lauritano C, Romano G, Ianora A (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16:165

    PubMed Central  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Matsumoto M, Nojima D, Nonoyama T, Ikeda K, Maeda Y, Yoshino T, Tanaka T (2017) Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar Drugs 15:94

    PubMed Central  Google Scholar 

  • Merz CR, Main KL (2014) Microalgae (diatom) production—the aquaculture and biofuels nexus. In: Oceans-St. John’s, IEEE, pp 1–10

  • Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS (2017) All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol 8:1239

    PubMed  PubMed Central  Google Scholar 

  • Mitra A, Zaman S (2016) Marine ecosystem: an overview. In: Basics of marine and estuarine ecology. Springer, New Delhi, pp 1–19

    Google Scholar 

  • Miyashita K, Hosokawa M (2018) Health impact of marine carotenoids. J Food Bioact 1:31–40

    Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Progr 28:299–311

    CAS  Google Scholar 

  • Nur MMA, Muizelaar W, Boelen P, Buma AGJ (2018) Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. J App Phycol 1–12

  • Nymark M, Sharma AK, Sparstad T, Bones A, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ooms MD, Dinh CT, Sargent EH, Sinton D (2016) Photon management for augmented photosynthesis. Nat Commun 7:12699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orefice I, Chandrasekaran R, Smerilli A, Corato F, Caruso T, Casillo A, Brunet C et al (2016) Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res 17:1–13

    Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pashiardis S, Kalogirou SA, Pelengaris A (2017) Characteristics of photosynthetic active radiation (PAR) through statistical analysis at Larnaca, Cyprus. SM J Biometrics Biostat 2:1009

    Google Scholar 

  • Pasquet V, Ulmann L, Mimouni V, Guihéneuf F, Jacquette B, Morant-Manceau A, Tremblin G (2014) Fatty acids profile and temperature in the cultured marine diatom Odontella aurita. J Appl Phycol 26:2265–2271

    CAS  Google Scholar 

  • Perfeito C, Ambrósio M, Santos RB, Afonso CN, Abranches R (2018) Increasing fucoxanthin production in Phaeodactylum tricornutum using genetic engineering and optimization of culture conditions. Front Mar Sci Conference Abstract: IMMR’18| International Meeting on Marine Research 2018

  • Popovich CA, Damiani MC, Constenla D, Martínez AM, Giovanardi M, Pancaldi S, Leonardi PI (2012) Neochloris oleoabundans grown in natural enriched seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Bioresour Technol 114:287–293

    CAS  PubMed  Google Scholar 

  • Poulsen N, Berne C, Spain J, Kröger N (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 46:1843–1846

    CAS  PubMed  Google Scholar 

  • Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656

    CAS  PubMed  Google Scholar 

  • Ragni R, Cicco SR, Vona D, Farinola GM (2018) Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv Mater 30:1704289

    Google Scholar 

  • Raven JA (1987) The role of vacuoles. New Phytol 106:357–422

    Google Scholar 

  • Reid MA, Tibby JC, Penny D, Gell PA (1995) The use of diatoms to assess past and present water quality. Aust J Ecol 20:57–64

    Google Scholar 

  • Remmers IM, D’Adamo S, Martens DE, de Vos RCH, Mumm R, America AHP, Cordevener JHG et al (2018) Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation. Algal Res 35:33–49

    Google Scholar 

  • Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev 92:394–404

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Romero-Romero CC, del Pilar Sánchez-Saavedra M (2017) Effect of light quality on the growth and proximal composition of Amphora sp. J App Phycol 29:1203–1211

    CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165

    CAS  PubMed  Google Scholar 

  • Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S (2015) Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol 99:10597–10609

    CAS  PubMed  Google Scholar 

  • Sabia A, Clavero E, Pancaldi S, Rovira JS (2018) Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol 102:1945–1954

    CAS  PubMed  Google Scholar 

  • Santaeufemia S, Torres E, Mera R, Abalde J (2016) Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater 320:315–325

    CAS  PubMed  Google Scholar 

  • Santaeufemia S, Torres E, Abalde J (2018) Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J Appl Phycol 30:471–482

    CAS  Google Scholar 

  • Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2012) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493

    PubMed  PubMed Central  Google Scholar 

  • Schulze PS, Barreira LA, Pereira HG, Perales JA, Varela JC (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430

    CAS  PubMed  Google Scholar 

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179

    CAS  Google Scholar 

  • Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Su Y, Lundholm N, Friis SM, Ellegaard M (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res 8:2363–2372

    CAS  Google Scholar 

  • Su Y, Lundholm N, Ellegaard (2018) Effects of abiotic factors on the nanostructure of diatom frustules—ranges and variability. App Microbiol Biotechnol 102:5889–5899

    CAS  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres E, Cid A, Herrero C, Abalde J (1998) Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol 63:213–220

    CAS  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA 110:19748–19753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukazaki C, Ishii KI, Matsuno K, Yamaguchi A, Imai I (2018) Distribution of viable resting stage cells of diatoms in sediments and water columns of the Chukchi Sea, Arctic Ocean. Phycologia 57:440–452

    Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang JK, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10:16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li Y, Wu N, Lan QC (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    CAS  PubMed  Google Scholar 

  • Wang H, Fu R, Pei G (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6:1041–1047

    Google Scholar 

  • Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130

    CAS  PubMed  Google Scholar 

  • Wichard T, Pohnert G (2006) Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J Am Chem Soc 128:7114–7115

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Buchel C, Fisahn J, Goss R, Jakob T, Laroche J, Lohr M et al (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Jungandreas A, Jakob T, Goss R (2014) Light acclimation in diatoms: from phenomenology to mechanisms. Mar Genom 16:5–15

    Google Scholar 

  • Winter JG, Duthie HC (2000) Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquat Ecol 34:345–353

    Google Scholar 

  • Yi Z, Xu M, Di X, Brynjolfsson S, Fu W (2017) Exploring valuable lipids in diatoms. Front Mar Sci 4:17

    Google Scholar 

  • Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW (2009) Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacilariophyceae) during starvation. J Appl Phycol 21:669–681

    CAS  Google Scholar 

  • Zhang H, Shahbazi MA, Mäkilä EM, da Silva TH, Reis RL, Salonen JJ, Hirvonen JT, Santos HA (2013) Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials 34:9210–9219

    CAS  PubMed  Google Scholar 

  • Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BBA-Bioenergetics 1797:1449–1457

    CAS  PubMed  Google Scholar 

  • Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundstrom V, Polivka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016

    CAS  Google Scholar 

  • Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I (2018) Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 70:1–16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University of Ferrara, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Pancaldi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldisserotto, C., Sabia, A., Ferroni, L. et al. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World J Microbiol Biotechnol 35, 35 (2019). https://doi.org/10.1007/s11274-019-2607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2607-z

Keywords

Navigation