Skip to main content

Advertisement

Log in

Effect of photodynamic inactivation of Escherichia coli by hypericin

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present study has focused on the effects of hypericin (Hyp) based photodynamic inactivation (PDI) of Escherichia coli (E. coli). To evaluate the efficiency of Hyp based PDI of E. coli, single factor experiments and response surface optimization experiment were conducted to obtain the optimum parameter values (36 µM Hyp, 5.9 J cm−2 light dose: 16.4 mW cm−2, 60 W, 260 s, 590 nm and 68 min incubation time) and finally achieved a 4.1 log CFU mL−1 decrease of E. coli. Cell-Hyp interaction and intracellular reactive oxygen species (ROS) level were detected by fluorescence spectrometric photometer. Data indicated that Hyp possessed a strong ability to bind with cells. In addition, a significant increase was observed in intracellular ROS level after Hyp-based photosensitization treatment. Therefore, Hyp-based photosensitization seems to be a promising method to efficiently inactivate E. coli. It is expected to be a safe, efficient, low cost and practical method which can be applied in the field of food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Escherichia coli :

E. coli

PDT:

Photodynamic therapy

PDI:

Photodynamic inactivation

Hyp:

Hypericin

ROS:

Reactive oxygen species

LED:

Light-emitting diode

HPPL:

High power pulsed light

References

  • Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473(4):347–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida A (2015) Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J Photochem Photobiol C 22:34–57

    Article  CAS  Google Scholar 

  • Andrade MC, Ribeiro AP, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS (2013) Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol 58:200–210

    Article  PubMed  CAS  Google Scholar 

  • Aponiene K, Luksiene Z (2015) Effective combination of led-based visible light, photosensitizer and photocatalyst to combat gram (-) bacteria. J Photochem Photobiol B 142:257–263

    Article  PubMed  CAS  Google Scholar 

  • Aponiene K, Paskeviciute E, Reklaitis I, Luksiene Z (2015) Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: comparison with other emerging anti-microbial treatments. J Food Eng 144:29–35

    Article  CAS  Google Scholar 

  • Bartolomeu M, Reis S, Fontes M, Neves M, Faustino MAF, Almeida A (2017) Photodynamic action against wastewater microorganisms and chemical pollutants: an effective approach with low environmental impact. Water 9(9):630–645

    Article  Google Scholar 

  • Bernal C, Rodrigues JAO, Guimarães APP, Ribeiro AO, Oliveira KTD, Imasato H (2011) Selective photoinactivation of C. albicans, and C. dubliniensis, with hypericin. Laser Phys 21(1):245–249

    Article  CAS  Google Scholar 

  • Buchovec I, Lukseviciūtė V, Kokstaite R, Labeikyte D, Kaziukonyte L, Luksiene Z (2017) Inactivation of gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: mechanism of action and new strategies to enhance the inactivation efficiency. J Photochem Photobiol B 172:1–10

    Article  PubMed  CAS  Google Scholar 

  • Crb L, Can R, Bogo D, Lima AR, Arruda EJ, Oliveira SL (2017) Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli. Lasers Med Sci 32(5):1–8

    Google Scholar 

  • Darbiniansarkissian N, Darbinyan A, Otte J, Radhakrishnan S, Sawaya BE, Arzumanyan A (2006) P27sj, a novel protein in St John’s Wort, that suppresses expression of HIV-1 genome. Gene Ther 13(4):288–295

    Article  CAS  Google Scholar 

  • Dementavicius D, Lukseviciute V, Gómez-López VM, Luksiene Z (2016) Application of mathematical models for bacterial inactivation curves using hypericin-based photosensitization. J Appl Microbiol 120(6):1492–1500

    Article  PubMed  CAS  Google Scholar 

  • Du W, Sun C, Liang Z, Han Y, Yu J (2012) Antibacterial activity of hypocrellin a against Staphylococcus aureus. World J Microbiol Biotechnol 28(11):3151–3157

    Article  PubMed  CAS  Google Scholar 

  • Falk H, Schmitzberger W (1992) On the nature of “soluble” hypericin in hypericum, species. Monatshefte Für Chemie 123(8–9):731–739

    Article  CAS  Google Scholar 

  • Hamblin MR, O’Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME (2002) Polycationic photosensitizer conjugates: effects of chain length and gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49(6):941–951

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44(6):490–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Jesus V, Martins D, Branco T, Valério N, Neves M, Faustino M (2017) An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants. Photochem Photobiol Sci. https://doi.org/10.1039/c7pp00300e

    Article  Google Scholar 

  • Jiang Y, Leung AW, Wang X, Zhang H, Xu C (2013) Inactivation of Staphylococcus aureus by photodynamic action of hypocrellin b. Photodiagn Photodyn Ther 10(4):600–606

    Article  CAS  Google Scholar 

  • Jiang Y, Leung W, Tang Q, Zhang H, Xu C (2014) Effect of light-activated hypocrellin b on the growth and membrane permeability of gram-negative Escherichia coli cells. Int J Photoenergy 2014(4):477–497

    Google Scholar 

  • Kairyte K, Lapinskas S, Gudelis V, Luksiene Z (2012) Effective inactivation of food pathogens Listeria monocytogenes and Salmonella enterica by combined treatment of hypericin-based photosensitization and high power pulsed light. J Appl Microbiol 112(6):1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Ke MR, Eastel JM, Ngai KL, Cheung YY, Chan PK, Hui M (2014) Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(ii) phthalocyanines. Eur J Med Chem 84(18):278–283

    Article  PubMed  CAS  Google Scholar 

  • Kilger R, Maier M, Szeimies RM, Bäumler W (2001) Bidirectional energy transfer between the triplet t 1, state of photofrin and singlet oxygen in deuterium oxide. Chem Phys Lett 343(5–6):543–548

    Article  CAS  Google Scholar 

  • Kim MJ, Bang WS, Yuk HG (2017) 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol 62:124–132

    Article  PubMed  CAS  Google Scholar 

  • Li X, Farid M (2016) A review on recent development in non-conventional food sterilization technologies. J Food Eng 182:33–45

    Article  Google Scholar 

  • Liao JC, Roider J, Jay DG (1994) Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc Natl Acad Sci USA 91(7):2659–2663

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Hu Y, Wu T, Zhou X, Shao Y (2017) Aggregation/dispersion conversion of hypericin by noncanonically structured DNA and a fluorescent Ba2+ sensor. Sensors Actuators B 247:19–25

    Article  CAS  Google Scholar 

  • Lismont M, Dreesen L, Wuttke S (2017) Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Func Mater 27(14):9–14

    Google Scholar 

  • Luksiene Z, Brovko L (2013) Antibacterial photosensitization-based treatment for food safety. Food Eng Rev 5(4):185–199

    Article  CAS  Google Scholar 

  • Luksiene Z, de Witte PA (2003) Hypericin as novel and promising photodynamic therapy tool: studies on intracellular accumulation capacity and growth inhibition efficiency. Medicina 39(7):677–682

    PubMed  Google Scholar 

  • Luksiene Z, Zukauskas A (2009) Prospects of photosensitization in control of pathogenic and harmful microorganisms. J Appl Microbiol 107(5):1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Luksiene Z, Kokstaite R, Katauskis P, Skakauskas V (2013) Novel approach to effective and uniform inactivation of gram-positive Listeria monocytogenes and gram-negative Salmonella enterica by photosensitization. Food Technol Biotechnol 51(3):338–344

    CAS  Google Scholar 

  • Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies RM (2007) The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci USA 104(17):7223–7228

    Article  PubMed  CAS  Google Scholar 

  • Maslaňáková M, Balogová L, Miškovský P, Tkáčová R, Štroffeková K (2016) Anti-and pro-apoptotic Bcl2 proteins distribution and metabolic profile in human coronary aorta endothelial cells before and after Hyp PDT. Cell Biochem Biophys 74(3):1–13

    Article  Google Scholar 

  • Miskovsky P (2002) Hypericin–a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets 3(1):55–84

    Article  PubMed  CAS  Google Scholar 

  • Montanha MC, Silva LL, Fbb P, Cesar GB, Gonçalves RS, Caetano W (2017) Response surface method optimization of a novel hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. J Photochem Photobiol B 170:247–255

    Article  PubMed  CAS  Google Scholar 

  • Nagata JY, Hioka N, Kimura E, Batistela VR, Terada RSS, Graciano AX (2012) Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagn Photodyn Ther 9(2):122–131

    Article  CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201

    PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira EFD, Tosati JV, Tikekar RV, Monteiro AR, Nitin N (2018) Antimicrobial activity of curcumin in combination with light against Escherichia coli, O157:H7 and Listeria innocua: applications for fresh produce sanitation. Postharvest Biol Technol 137:86–94

    Article  CAS  Google Scholar 

  • Paula LFD, Santos RO, Menezes HD, Britto JRD, Vieira Jr JB, Filho PPG (2010) A comparative study of irradiation systems for photoinactivation of microorganisms. J Braz Chem Soc 21(4):694–700

    Article  Google Scholar 

  • Paz-Cristobal MP, Gilaberte Y, Alejandre C, Pardo J, Revillo MJ, Rezusta A (2014) In vitro fungicidal photodynamic effect of hypericin on trichophyton spp. Mycopathologia 178(3–4):221–225

    Article  PubMed  CAS  Google Scholar 

  • Penha CB, Bonin E, Silva AFD, Hioka N, Zanqueta ÉB, Nakamura TU (2016) Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT-Food Sci Technol 73:198–202

    Google Scholar 

  • Pucelik B, Paczyński R, Dubin G, Pereira MM, Arnaut LG, Dąbrowski JM (2017) Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE 12(10):e0185984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romanova NA, Brovko LY, Moore L, Pometun E, Savitsky AP, Ugarova NN (2003) Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP Bioluminescence. Appl Environ Microbiol 69(11):6393–6398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seal JB, Beatriz M, Bethel CD, Daum RS (2003) Antimicrobial resistance in Staphylococcus aureus at the university of chicago hospitals: a 15-year longitudinal assessment in a large university-based hospital. Infect Control Hosp Epidemiol 24(6):403–408

    Article  PubMed  Google Scholar 

  • Sorialozano P, Gilaberte Y, Pazcristobal MP, Pérezartiaga L, Lampayapérez V, Aporta J (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15(1):187–194

    Article  CAS  Google Scholar 

  • Sperandio FF, Huang YY, Hamblin MR (2013) Antimicrobial photodynamic therapy to kill gram-negative bacteria. Recent Pat Anti-Cancer Drug Discov 8(2):108–120

    Article  CAS  Google Scholar 

  • Srimagal A, Ramesh T, Sahu JK (2016) Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT-Food Sci Technol 71:378–385

    Article  CAS  Google Scholar 

  • Tang HM, Hamblin MR, Yow CMN (2007) A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens. J Infect Chemother 13(2):87–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Văcăroiu C, Enache M, Gartner M, Popescu G, Anastasescu M, Brezeanu A (2009) The effect of thermal treatment on antibacterial properties of nanostructured TiO 2 (N) films illuminated with visible light. World J Microbiol Biotechnol 25(1):27–31

    Article  CAS  Google Scholar 

  • Vollmer JJ (2004) Chemistry of St. John’s Wort: hypericin and hyperforin. J Chem Educ 81(10):1450–1456

    Article  CAS  Google Scholar 

  • Wang Y, Shi X, Qi Z (2010) Hypericin prolongs action potential duration in hippocampal neurons by acting on k+ channels. Br J Pharmacol 159(7):1402–1407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waser M, Falk H (2012) Cheminform abstract: progress in the chemistry of second generation hypericin-based photosensitizers. Curr Org Chem 15(23):3894–3897

    Article  Google Scholar 

  • WHO (2015) http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 25 Nov 2015

  • Yoğurtçu BM, Demirci S, Doğan A, Asutay AB, Şahin F (2017) Anticandidal activity of hetero-dinuclear copper(ii) mn(ii) schiff base and its potential action of the mechanism. World J Microbiol Biotechnol 33(11):202

    Article  PubMed  CAS  Google Scholar 

  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90(2):619–627

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Project of China (2016YFD0400902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-hong Meng.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1. Schematic presentation of LED-based light source prototype (TIF 1079 KB)

11274_2018_2464_MOESM2_ESM.jpg

Supplementary Fig. S2. Curve fitting diagram of the relation between light density and light source power and light distance (JPG 599 KB)

11274_2018_2464_MOESM3_ESM.jpg

Supplementary Fig. S3. Inactivation of Escherichia coli by photosensitization with 5.9 J cm-2 as a function of anhydrous ethanol concentration (JPG 4407 KB)

Supplementary Fig. S4. The inhibition assessment of hypericin on RWPE-1 cells (JPG 69 KB)

11274_2018_2464_MOESM5_ESM.jpg

Fig. S5. Assessment of apoptosis in RWPE-1 Cells treated with 36 μM hypericin by using DAPI and PI staining through fluorescence microscope detection analysis (JPG 397 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jn., Zhang, F., Tang, Qj. et al. Effect of photodynamic inactivation of Escherichia coli by hypericin. World J Microbiol Biotechnol 34, 100 (2018). https://doi.org/10.1007/s11274-018-2464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2464-1

Keywords

Navigation