Skip to main content

Advertisement

Log in

Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Species that are currently listed under the genus Brevibacillus (formerly, Bacillus brevis cluster) have been a rich source of antimicrobial peptides for many decades. The first known peptide antibiotic, gramicidin, is presumed to be produced by a Brevibacillus sp. Members of the genus are widely spread in nature. They can be found in a variety of environments including intestinal tracts of animals, seawater, and soil. Some Brevibacillus strains have been used commercially as probiotics. Bioactive peptides produced by Brevibacillus spp. include antibacterial, antifungal and anti-invertebrate agents. Brevibacillus antimicrobial peptides are synthesized through ribosomal or nonribosomal pathway; these two groups can be further categorized based on specific structural features such as cyclization and presence of lipid chain. Some of the antimicrobial compounds produced by this genus share structural similarities that were overlooked previously. For example, the structural similarity between BT peptide, brevibacillin, and bogorol was revealed only recently. Here we review and classify Brevibacillus antimicrobial peptides and summarize their bioactivities and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS-PKS megasynthases. Nucleic Acids Res 32:W405-W413

    Article  PubMed Central  Google Scholar 

  • Baindara P, Singh N, Ranjan M, Nallabelli N, Chaudhry V, Pathania GL, Sharma N, Kumar A, Patil PB, Korpole S (2016) Laterosporulin10: a novel defensin like class IId bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiol 162:1286–1299

    Article  CAS  Google Scholar 

  • Barsby T, Kelly MT, Gagné SM, Andersen RJ (2001) Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3:437–440

    Article  CAS  PubMed  Google Scholar 

  • Barsby T, Warabi K, Sørensen D, Zimmerman WT, Kelly MT, Andersen RJ (2006) The bogorol family of antibiotics: template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J Org Chem 71:6031–6037

    Article  CAS  PubMed  Google Scholar 

  • Berditsch M, Afonin S, Ulrich AS (2007) The ability of Aneunnibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 73:6620–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berditsch M, Lux H, Babii O, Afonin S, Ulrich AS (2016) Therapeutic potential of gramicidin S in the treatment of root canal infections. Pharmaceuticals 9:56

    Article  PubMed Central  Google Scholar 

  • Chandel S, Allan EJ, Woodward S (2010) Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158:470–478

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • Cozzarelli NR (1977) The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 46:641–668

    Article  CAS  PubMed  Google Scholar 

  • Czajgucki Z, Andruszkiewicz R, Kamysz W (2006) Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues. J Pept Sci 12:653–662

    Article  CAS  PubMed  Google Scholar 

  • Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Qin C, Guo Z, Niu W, Zhang R, Li Y (2007) Solid-phase total synthesis and antimicrobial activities of loloatins A–D. Chem Biodiversity 4:2827–2834

    Article  CAS  Google Scholar 

  • Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH (2004) Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol Cell 13:113–124

    Article  CAS  PubMed  Google Scholar 

  • Djukic M, Poehlein A, Thürmer A, Daniel R (2011) Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J Bacteriol 139:5535–5536

    Article  Google Scholar 

  • Edwards SG, Seddon B (2001) Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J Appl Micro 91:652–659

    Article  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  • Gall YM, Konashev MB (2001) The discovery of gramicidin S: the intellectual transformation of GF Gause from biologist to researcher of antibiotics and on its meaning for the fate of Russian genetics. Hist Philos Life Sci 23:137–150

    CAS  PubMed  Google Scholar 

  • Gause GF, Brazhnikova M (1944) Gramicidin S and its use in the treatment of infected wounds. Nature 154:703

    Article  Google Scholar 

  • Gerard J, Haden P, Kelly MT, Andersen RJ (1996) Loloatin B, a cyclic decapeptide antibiotic produced in culture by a tropical marine bacterium. Tetrahedron Lett 37:7201–7204

    Article  CAS  Google Scholar 

  • Gerard JM, Haden P, Kelly MT, Andersen RJ (1999) Loloatins A–D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62:80–85

    Article  CAS  PubMed  Google Scholar 

  • Ghadbane M, Harzallah D, Laribi AI, Jaouadi B, Belhadj H (2013) Purification and biochemical characterization of a highly thermostable bacteriocin isolated from Brevibacillus brevis strain GM100. Biosci Biotechnol Biochem 77:151–160

    Article  CAS  PubMed  Google Scholar 

  • Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD (2015) The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol 6:1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatayama K, Shoun H, Ueda Y, Nakamura A (2014) Brevibacillus fulvus sp. nov., isolated from a compost pile. Int J Syst Evol Microbiol 64:506–512

    Article  CAS  PubMed  Google Scholar 

  • Hill SR, Bonjouklian R, Powis G, Abraham RT, Ashendel CL, Zalkow LH (1994) A multisample assay for inhibitors of phosphatidylinositol phospholipase C: identification of naturally occurring peptide inhibitors with antiproliferative activity. Anticancer Drug Des 9:353–361

    CAS  PubMed  Google Scholar 

  • Hotchkiss RD, Dubos RJ (1940) Fractionation of the bactericidal agent from cultures of a soil Bacillus. J Biol Chem 132:791–792

    CAS  Google Scholar 

  • Huang E, Guo Y, Yousef AE (2014) Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Res Microbiol 165:243–251

    Article  CAS  PubMed  Google Scholar 

  • Jiang YW, Sims MD, Conway DP (2005) The efficacy of TAMUS 2032 in preventing a natural outbreak of colibacillosis in broiler chickens in floor pens. Poult Sci 84:1857–1859

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279:7413–7419

    Article  CAS  PubMed  Google Scholar 

  • Khaled JM, Al-Mekhlafi FA, Mothana RA, Alharbi NS, Alzaharni KE, Sharafaddin AH, Kadaikunnan S, Alobaidi AS, Bayaqoob NI, Govindarajan M, Benelli G (2017) Brevibacillus laterosporus isolated from the digestive tract of honeybees has high antimicrobial activity and promotes growth and productivity of honeybee’s colonies. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0071-6

    Google Scholar 

  • Kogut MH, Genovese KJ, He H, Li MA, Jiang YW (2007) The effects of the BT/TAMUS 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal Salmonella enterica serovar Enteritidis infection. Int Immunopharmacol 7:912–919

    Article  CAS  PubMed  Google Scholar 

  • Kogut MH, Genovese KJ, He H, Swaggerty CL, Jiang YW (2012) BT cationic peptides: small peptides that modulate innate immune responses of chicken heterophils and monocytes. Vet Immunol Immunopathol 145:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kurylo-Borowska Z, Szer W (1972) Inhibition of bacterial DNA synthesis by edeine. Effect on Escherichia coli mutants lacking DNA polymerase I. Biochim Biophys Acta—Nucleic Acids Protein Synth 287:236–245

    Article  CAS  Google Scholar 

  • Lang C, Staiger C (2016) Tyrothricin—an underrated agent for the treatment of bacterial skin infections and superficial wounds? Pharmazie 71:299–305

    CAS  PubMed  Google Scholar 

  • Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310

    Article  CAS  PubMed  Google Scholar 

  • Lipmann F, Hotchkiss RD, Dubos RJ (1941) The occurrence of d-amino acids in gramicidin and tyrocidine. J Biol Chem 141:163–169

    CAS  Google Scholar 

  • Logan NA, De Vos P (2009) Genus IV. Brevibacillus Shida, Takagi, Kadowaki and Komagata 1996a, 942VP. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 305–316

    Google Scholar 

  • Martinez FAC, Balciunas EM, Converti A, Cotter PD, De Souza Oliveira RP (2013) Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 31:482–488

    Article  CAS  PubMed  Google Scholar 

  • McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26:537–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogi T, Kita K (2009) Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 66:3821–3826

    Article  CAS  PubMed  Google Scholar 

  • Munyuki G, Jackson GE, Venter GA, Kövér KE, Szilágyi L, Rautenbach M, Spathelf BM, Bhattacharya B, Van Der Spoel D (2013) β-sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus. Biochemistry 52:7798–7806

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Yamauchi D, Kubota K (2005) Enhancement of linear gramicidin expression from Bacillus brevis ATCC 8185 by casein peptide. Biosci Biotechnol Biochem 69:700–704

    Article  CAS  PubMed  Google Scholar 

  • O’donnell BJ (1995) U.S. Patent No. 5,455,028. U.S. Patent and Trademark Office, Washington, DC

  • Panda AK, Bisht SS, DeMondal S, Senthil Kumar N, Gurusubramanian G, Panigrahi AK (2014) Brevibacillus as a biological tool: a short review. Antonie Van Leeuwenhoek 105:623–639

    Article  CAS  PubMed  Google Scholar 

  • Prenner EJ, Lewis RN, McElhaney RN (1999) The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim Biophys Acta—Biomembr 1462:201–221

    Article  CAS  Google Scholar 

  • Rea M, Ross RP, Cotter P, Hill C (2011) Classification of bacteriocins from gram-positive bacteria. In: Drider D, Renuffat S (eds) Prokaryotic antimicrobial peptides. Springer, New York pp, pp 29–53

    Chapter  Google Scholar 

  • Rebuffat S (2011) Bacteriocins from Gram-negative bacteria: a classification? In: Drider D, Renuffat S (eds) Prokaryotic antimicrobial peptides. Springer, New York, pp 55–72

    Chapter  Google Scholar 

  • Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4:476–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadredinamin M, Mehrnejad F, Hosseini P, Doustdar F (2016) Antimicrobial peptides (AMPs). Nov Biomed 4:70–76

    CAS  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Safety 2:101–110

    Article  Google Scholar 

  • Scherkenbeck J, Chen H (2002) Solid-phase syntheses of loloatins A–C. Eur J Org Chem 1434:2350–2355

    Article  Google Scholar 

  • Schneider T, Müller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents-potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304:37–43

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Singh PK, Midha S, Ranjan M, Korpole S, Patil PB (2012) Genome sequence of Brevibacillus laterosporus strain GI-9. J Bacteriol 194:1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    Article  CAS  PubMed  Google Scholar 

  • Shoji J, Kato T (1976) The structure of brevistin. J Antibiot 29:380–389

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Chittpurna A, Sharma V, Patil PB, Korpole S (2012) Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS ONE 7:e31498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Solanki V, Sharma S, Thakur KG, Krishnan B, Korpole S (2015) The intramolecular disulfide-stapled structure of laterosporulin, a class IId bacteriocin, conceals a human defensin-like structural module. FEBS J 282:203–214

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Liu Q, Guo H, Ju R, Zhao Y, Li J, Liu X (2012) Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresour Technol 111:504–506

    Article  CAS  PubMed  Google Scholar 

  • Spathelf BM, Rautenbach M (2009) Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. Bioorganic Med Chem 17:5541–5548

    Article  CAS  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Shida O, Kadowaki K, Komagata K, Udaka S (1993) Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov. Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43:221–231

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Iinuma H, Kunimoto S, Masuda T, Ishizuka M, Takeuchi M, Masa H, Hiroshi N, Shinichi K, Umezawa H (1981) A new antitumor antibiotic, spergualin: isolation and antitumor activity. J Antibiot 34:1619–1621

    Article  CAS  PubMed  Google Scholar 

  • Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2017) Orange book: approved drug products with therapeutic equivalence evaluations. Retrieved from https://www.accessdata.fda.gov/scripts/cder/ob/search_product.cfm

  • Vosloo JA, Stander MA, Leussa ANN, Spathelf BM, Rautenbach M (2013) Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus. Microbiol 159:2200–2211

    Article  CAS  Google Scholar 

  • Waki M, Izumiya N (1990) Recent advances in the biotechnology of B-lactams and microbial bioactive peptides. In: Kleinhaug H, van Dohren H (eds) Biochemistry of peptide antibiotics. Walter de Gruyter Co., Berlin pp 205–240

    Google Scholar 

  • Wang G (2015) Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol Biol 1268:43–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Haddad NIA, Yang SZ, Mu BZ (2010) Structural characterization of lipopeptides from Brevibacillus brevis HOB1. Appl Biochem Biotechnol 160:812–821

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Qin L, Pace CJ, Wong P, Malonis R, Gao J (2012) Solubilized gramicidin A as potential systemic antibiotics. ChemBioChem 13:51–55

    Article  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  CAS  PubMed  Google Scholar 

  • Westman EL, Yan M, Waglechner N, Koteva K, Wright GD (2013) Self resistance to the atypical cationic antimicrobial peptide edeine of Brevibacillus brevis Vm4 by the N-acetyltransferase EDeQ. Chem Biol 20:983–990

    Article  CAS  PubMed  Google Scholar 

  • Wigger-Alberti W, Stauss-Grabo M, Grigo K, Atiye S, Williams R, Korting HC (2012) Efficacy of a tyrothricin-containing wound gel in an abrasive wound model for superficial wounds. Skin Pharmacol Physiol 26:52–56

    Article  PubMed  Google Scholar 

  • Wu X, Ballard J, Jiang YW (2005) Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl Environ Microbiol 71:8519–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Sugár IP, Krishna NR (1995) A variable target intensity-restrained global optimization (VARTIGO) procedure for determining three-dimensional structures of polypeptides from NOESY data: application to gramicidin S. J Biomol NMR 5:37–48

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Qin C, Zhang R, Niu W, Shang X (2010) Solid-phase synthesis and antibiotic activities of cyclodecapeptides on the scaffold of naturally occurring laterocidin. Bioorganic Med Chem Lett 20:164–167

    Article  CAS  Google Scholar 

  • Yang X, Huang E, Yuan C, Zhang L, Yousef AE (2016) Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant gram-positive bacteria. Appl Environ Microbiol 82:2763–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Huang E, Yousef AE (2017a) Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiol Res 195:18–23

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Huang E, Yesil M, Xiaoli L, Dudley EG, Yousef AE (2017b) Draft genome sequence of Brevibacillus laterosporus OSY-I1, a strain that produces brevibacillin which combats drug-resistant gram-positive bacteria. Genome Announc 5:e01093-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yuan DD, Liu GC, Ren DY, Zhang D, Zhao L, Kan CP, Yang YZ, Ma W, Li Y, Zhang LB (2012) A survey on occurrence of thermophilic bacilli in commercial milk powders in China. Food Control 25:752–757

    Article  Google Scholar 

  • Zhao J, Guo L, Zeng H, Yang X, Yuan J, Shi H, Xiong Y, Chen M, Han L, Qiu D (2012) Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 33:206–211

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported by Center for Advanced Processing and Packing Studies (CAPPS) and a scholarship to X. Yang from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Yousef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yousef, A.E. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 34, 57 (2018). https://doi.org/10.1007/s11274-018-2437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2437-4

Keywords

Navigation