Skip to main content
Log in

Efficient synthesis of (S)-N-Boc-3-hydroxypiperidine using an (R)-specific carbonyl reductase from Candida parapsilosis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

(S)-N-Boc-3-hydroxypiperidine (S-NBHP) is a critical chiral intermediate in the synthesis of pharmaceuticals, including ibrutinib, the active pharmaceutical ingredient of the new drug Imbruvica approved for the treatment of lymphoma. An (R)-specific carbonyl reductase from Candida parapsilosis (CprCR, also known as R-specific alcohol dehydrogenase) that catalyzes asymmetric reduction to produce (S)-N-Boc-3-hydroxypiperidine (S-NBHP) was identified for the first time. When co-expressed with a glucose dehydrogenase from Bacillus megaterium in Escherichia coli Rosetta (DE3), recombinant crude enzyme exhibited an activity of 9 U/mg with N-Boc-3-piperidone as the substrate and 12 U/mg with glucose as the substrate. The biocatalysis of N-Boc-3-piperidone to S-NBHP using recombinant whole-cell biocatalysts was processed in a water/butyl acetate system as well as an aqueous monophasic system without extra NAD+/NADH. This process showed great commercial potential, with a 100 g/l substrate concentration and a whole cells loading (w/v) of 10%, with the conversion of 97.8% and an e.e. of 99.8% in an aqueous monophasic system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Advani RH, Buggy JJ, Sharman JP, Smith SM et al (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-Cell malignancies. J Clin Oncol 31:88–94

    Article  CAS  Google Scholar 

  • Bradford MM, McRorie RA, Williams WL (1976) A role for esterases in the fertilization process. J Exp zool 197:297–301

    Article  CAS  Google Scholar 

  • Chakraborty AA, Phadke RP, Chaudhary FA, Shete PS et al (2005) Optimization of redox reactions employing whole cell biocatalysis. World J Microbiol Biotechnol 21:221–227

    Article  CAS  Google Scholar 

  • Danielsson O, Atrian S, Luque T, Hjelmqvist L et al (1994) Fundamental molecular differences between alcohol-dehydrogenase classes. Proc Natl Acad Sci USA 91:4980–4984

    Article  CAS  Google Scholar 

  • Dragutan I, Dragutan V, Demonceau A (2012) Targeted drugs by olefin metathesis: piperidine-based iminosugars. Rsc Adv 2:719–736

    Article  CAS  Google Scholar 

  • Goldberg K, Schroer K, Luetz S, Liese A (2007) Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76:237–248

    Article  CAS  Google Scholar 

  • Gröger H, Hummel W, Rollmann C, Chamouleau F et al (2004) Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron 60:633–640

    Article  Google Scholar 

  • Hellberg LH, Beeson C, Somanathan R (1986) Synthesis of the spirocyclic alkaloid nitramine. Tetrahedron Lett 27:3955–3956

    Article  CAS  Google Scholar 

  • Honigberg LA, Smith AM, Sirisawad M, Verner E et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 107:13075–13080

    Article  CAS  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  • Jain N, O’Brien S (2015) Targeted therapies for CLL: Practical issues with the changing treatment paradigm. Blood Rev 30:233–244

    Article  Google Scholar 

  • Jornvall H, Hoog JO, Persson B (1999) SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. Febs Lett 445:261–264

    Article  CAS  Google Scholar 

  • Kim JH, Thart H, Stevens JF (1996) Alkaloids of some Asian Sedum species. Phytochemistry 41:1319–1324

    Article  CAS  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M et al (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

    Article  CAS  Google Scholar 

  • Lacheretz R, Pardo DG, Cossy J (2009) Daucus carota mediated-reduction of cyclic 3-Oxo-amines. Org Lett 11:1245–1248

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu YC, Liu Y, Wu ZL (2015) Synthesis of enantiopure glycidol derivatives via a one-pot two-step enzymatic cascade. Org Biomol Chem 13:2146–2152

    Article  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  Google Scholar 

  • Müller P, Bangasser BL, Greiner L, Na’Amnieh S et al (2011) Stable continuous operation of a biphasic enantioselective enzymatic reduction. Open Catal J 4:113–116

    Article  Google Scholar 

  • Musa MM, Phillips RS (2011) Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catalscitechnol 1:1311–1323

    CAS  Google Scholar 

  • Nie Y, Xu Y, Wang HY, Xu N et al (2009) Complementary selectivity to (S)-1-phenyl-1,2-ethanediol-forming Candida parapsilosis by expressing its carbonyl reductase in Escherichia coli for (R)-specific reduction of 2-hydroxyacetophenone. Biocatal Biotrans 26:210–219

    Article  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

    Article  CAS  Google Scholar 

  • Shah N, Hutchinson C, Rule S (2014) Ibrutinib for the treatment of mantle cell lymphoma. Expert Rev Hematol 7:521–531

    Article  CAS  Google Scholar 

  • Shen W, Shen Z, Hu Z, Lin Y et al (2013) Synthesis of (S)-1-Boc-3-hydroxypiperidine. Chin J Pharm 44:436–438

    CAS  Google Scholar 

  • Snider BB, Cartayamarin CP (1984) Total synthesis of (+/−)-nitramine—development of a ketene equivalent in the ene reaction. J Org Chem 49:1688–1691

    Article  CAS  Google Scholar 

  • Tanaka N, Kusakabe Y, Ito K, Yoshimoto T et al (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143:211–218

    Article  Google Scholar 

  • Thieblemont C (2015) Ibrutinib: a new drug of B-cell malignancies. Bull Du Cancer 102:S85–S90

    Article  Google Scholar 

  • Xu GP, Wang HB, Wu ZL (2016) Efficient bioreductive production of (S)-N-Boc-3-hydroxypiperidine using ketoreductase ChKRED03. Process Biochem 51:881–885

    Article  CAS  Google Scholar 

  • Ye Q, Cao H, Zang G, Mi L et al (2010) Biocatalytic synthesis of (S)-4-chloro-3-hydroxybutanoate ethyl ester using a recombinant whole-cell catalyst. Appl Microbiol Biotechnol 88:1277–1285

    Article  CAS  Google Scholar 

  • Ye Q, Ouyang P, Ying H (2011) A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. Appl Microbiol Biotechnol 89:513–522

    Article  CAS  Google Scholar 

  • Zhu W, Wang B, Wu H, Li B (2015) A Chemo-enzyme method to synthesis of (S)-t-butyl 3-hydroxypiperidine-1-carboxylate. Chin J Pharm 46:349–350

    CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yan, M. & Xu, L. Efficient synthesis of (S)-N-Boc-3-hydroxypiperidine using an (R)-specific carbonyl reductase from Candida parapsilosis . World J Microbiol Biotechnol 33, 61 (2017). https://doi.org/10.1007/s11274-016-2189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2189-y

Keywords

Navigation