Skip to main content
Log in

Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus amyloliquefaciens strain WF02, isolated from soil collected at Wufeng Mountain, Taiwan, has siderophore-producing ability and in vitro antagonistic activity against bacterial wilt pathogen. To determine the impact of plant genotype on biocontrol effectiveness, we treated soil with this strain before infecting susceptible (L390) and moderately resistant (Micro-Tom) tomato cultivars with Ralstonia solanacearum strain Pss4. We also compared the efficacy of this strain with that of commercial Bacillus subtilis strain Y1336. Strain WF02 provided longer lasting protection against R. solanacearum than did strain Y1336 and controlled the development of wilt in both cultivars. To elucidate the genetic responses in these plants under WF02 treatment, we analyzed the temporal expression of defense-related genes in leaves. The salicylic acid pathway-related genes phenylalanine ammonia-lyase and pathogenesis-related protein 1a were up-regulated in both cultivars, whereas expression of the jasmonic acid pathway-related gene lipoxygenase was only elevated in the susceptible tomato cultivar (L390). These results suggest that WF02 can provide protection against bacterial wilt in tomato cultivars with different levels of disease resistance via direct and indirect modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akila R, Rajendran L, Harish S, Saveetha K, Raguchander T, Samiyappan R (2011) Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol Control 57:175–183. doi:10.1016/j.biocontrol.2011.02.010

    Article  Google Scholar 

  • Almoneafy AA et al (2013) Synergistic effect of acetyl salicylic acid and DL-beta-aminobutyric acid on biocontrol efficacy of Bacillus strains against tomato bacterial wilt Tropical. Plant Pathol 38:102–113

    Google Scholar 

  • Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360. doi:10.1128/Aem.66.10.4356-4360.2000

    Article  CAS  Google Scholar 

  • Buddenhagen I, Kelman A (1964) Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 2:203–230. doi:10.1146/annurev.py.02.090164.001223

    Article  Google Scholar 

  • Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009a) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44. doi:10.1016/j.jbiotec.2008.10.015

    Article  CAS  Google Scholar 

  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009b) Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136:324–335. doi:10.1111/J.1399-3054.2009.01226.X

    Article  CAS  Google Scholar 

  • Chen D, Liu X, Li C, Tian W, Shen Q, Shen B (2014) Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J Environ Manage 137C:120–127. doi:10.1016/j.jenvman.2014.01.043

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. doi:10.1016/j.micres.2008.08.007

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/Aem.71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  • Doornbos R, van Loon L, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A Rev Agron Sustain Dev 32:227–243. doi:10.1007/s13593-011-0028-y

    Article  Google Scholar 

  • Eden PA, Schmidt TM, Blakemore RP, Pace NR (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16s ribosomal-RNA-specific DNA. Int J Syst Bacteriol 41:324–325

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Fredslund L, Ekelund F, Jacobsen CS, Johnsen K (2001) Development and application of a most-probable-number-PCR assay to quantify flagellate populations in soil samples. Appl Environ Microbiol 67:1613–1618. doi:10.1128/Aem.67.4.1613-1618.2001

    Article  CAS  Google Scholar 

  • French E, De Lindo L (1982) Resistance to Pseudomonas solanacearum in potato: specificity and temperature sensitivity. Phytopathology 72:1408–1412. doi:10.1094/Phyto-72-1408

    Article  Google Scholar 

  • Ghareeb H, Bozso Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89. doi:10.1016/J.Pmpp.2010.11.004

    Article  CAS  Google Scholar 

  • Gonzalez-Sanchez MA, de Vicente A, Perez-Garcia A, Perez-Jimenez R, Romero D, Cazorla FM (2013) Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biol Control 67:94–100. doi:10.1016/J.Biocontrol.2013.08.009

    Article  Google Scholar 

  • Granada GA, Sequeira L (1983) A new selective medium for Pseudomonas-solanacearum. Plant Dis 67:1084–1088. doi:10.1094/Pd-67-1084

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/Nrmicro1129

    Article  CAS  Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. doi:10.1093/molbev/mst012

    Article  CAS  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684

    Article  CAS  Google Scholar 

  • Husen E (2003) Screening of soil bacteria for plant growth promoting activities in vitro. Indones J Agric Sci 4:27–31

    Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng C, Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573. doi:10.1111/j.1574-6941.2008.00543.x

    Article  CAS  Google Scholar 

  • Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W (2016) A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins. Nat Commun 7:11685. doi:10.1038/ncomms11685

    Article  CAS  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LS, Shin-Ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842. doi:10.1093/jxb/ert212

    Article  CAS  Google Scholar 

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Kim DS, Cook RJ, Weller DM (1997) Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551–558. doi:10.1094/Phyto.1997.87.5.551

    Article  CAS  Google Scholar 

  • Kulkarni JH, Patil RB (1982) Production and utilization of extracellular slime by Pseudomonas solanacearum and its role on survival at different relative humidities. Acta Microbiol Pol 31:159–165

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    Article  CAS  Google Scholar 

  • Marian MN et al (2012) MPN-PCR detection and antimicrobial resistance of Listeria monocytogenes isolated from raw and ready-to-eat foods in Malaysia. Food Control 28:309–314. doi:10.1016/j.foodcont.2012.05.030

    Article  CAS  Google Scholar 

  • Michel VV, Mew T (1998) Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology 88:300–305. doi:10.1094/Phyto.1998.88.4.300

    Article  CAS  Google Scholar 

  • Milling A, Babujee L, Allen C (2011) Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6:e15853. doi:10.1371/journal.pone.0015853

    Article  CAS  Google Scholar 

  • Munar-Vivas O, Morales-Osorio JG, Castañeda-Sánchez DA (2010) Use of field-integrated information in GIS-based maps to evaluate Moko disease (Ralstonia solanacearum) in banana growing farms in Colombia. Crop Prot 29:936–941. doi:10.1016/J.Cropro.2010.04.021

    Article  Google Scholar 

  • Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92:395–405

    CAS  Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/J.Copbio.2010.12.003

    Article  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Olizari H, Marzorati M, Brusetti L, Boudabous A, Daffonchio D (2007) Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann Microbiol 57:481–494

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55. doi:10.1007/s11274-008-9859-3

    Article  Google Scholar 

  • Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67:421–430. doi:10.1016/J.Biocontrol.2013.09.012

    Article  Google Scholar 

  • Ryan AD, Kinkel LL, Schottel JL (2004) Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Sci Technol 14:301–311. doi:10.1080/09583150410001665187

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.103.026583

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/Nmeth.2089

    Article  CAS  Google Scholar 

  • Svercel M, Hamelin J, Duffy B, Moenne-Loccoz Y, Defago G (2010) Distribution of Pseudomonas populations harboring phlD or hcnAB biocontrol genes is related to depth in vineyard soils. Soil Biol Biochem 42:466–472. doi:10.1016/J.Soilbio.2009.11.030

    Article  CAS  Google Scholar 

  • Swanepoel AE (1992) Survival of South-African strains of biovar-2 and biovar-3 of Pseudomonas solanacearum in the roots and stems of weeds. Potato Res 35:329–332. doi:10.1007/Bf02357714

    Article  Google Scholar 

  • Swanson JK, Yao J, Tans-Kersten J, Allen C (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95:136–143. doi:10.1094/Phyto-95-0136

    Article  Google Scholar 

  • Tan S, Dong Y, Liao H, Huang J, Song S, Xu Y, Shen Q (2013) Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag Sci 69:1245–1252. doi:10.1002/ps.3491

    CAS  Google Scholar 

  • Teitelbaum SL, Gammon MD, Britton JA, Neugut AI, Levin B, Stellman SD (2007) Reported residential pesticide use and breast cancer risk on Long Island. N Y Am J Epidemiol 165:643–651. doi:10.1093/aje/kwk046

    Article  Google Scholar 

  • Thomas HA (1942) Bacterial densities from fermentation tube tests. J Am Water Works Assoc 24:572–576

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. doi:10.1146/annurev.phyto.36.1.453

    Article  Google Scholar 

  • Vanitha S, Umesha S (2011) Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biol Plant 55:317–322. doi:10.1007/s10535-011-0045-3

    Article  CAS  Google Scholar 

  • Vanitha S, Niranjana S, Mortensen C, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. Biocontrol 54:685–695. doi:10.1007/s10526-009-9217-x

    Article  Google Scholar 

  • Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13. doi:10.1094/Mpmi.2000.13.1.6

    Article  CAS  Google Scholar 

  • Wang LT, Lee FL, Tai CJ, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850. doi:10.1099/ijs.0.64685-0

    Article  CAS  Google Scholar 

  • Wu S, Peiffer M, Luthe DS, Felton GW (2012) ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One 7:e41947

    Article  CAS  Google Scholar 

  • Yamada S, Ohashi E, Agata N, Venkateswaran K (1999) Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringinesis, B. mycoides, and B-anthracis and their application to the detection of B. cereus in rice. Appl Environ Microbiol 65:1483–1490

    CAS  Google Scholar 

  • Yamamoto S, Shiraishi S, Kawagoe Y, Mochizuki M, Suzuki S (2014) Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato. Pest Manag Sci. doi:10.1002/ps.3837

    Google Scholar 

  • Yang W, Xu Q, Liu H, Wang Y, Wang Y, Yang H, Guo J (2012) Evaluation of biological control agents of Ralstonia wilt on ginger. Biol Control 62:144–151

    Article  Google Scholar 

  • Zhao QY, Ran W, Wang H, Li X, Shen QR, Shen SY, Xu YC (2013) Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. Biocontrol 58:283–292. doi:10.1007/S10526-012-9496-5

    Article  Google Scholar 

  • Zhao X et al (2015) Collagen-like proteins (ClpA, ClpB, ClpC, and ClpD) are required for biofilm formation and adhesion to plant roots by Bacillus amyloliquefaciens FZB42. PLoS One 10:e0117414. doi:10.1371/journal.pone.0117414

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Chiu-Ping Cheng (Graduate Institute of Plant Biology, National Taiwan University) and Dr. Jen-Chih Chen (Institute of Biotechnology, National Taiwan University) for sharing the bacterial and plant materials used in this study. We thank American Journal Experts for English language (Akila et al. 2011) editing. This study was supported by Grants from the Ministry of Science and Technology (101-2324-B-001-CC2 and 102-2313-B-002 -011 -MY3), National Taiwan University (102/103.SC 2B4 and 103R7602B429) and was also funded by Great Victory Chemical Industry Co. LTD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Te Liu.

Additional information

Chu-Ning Huang and Chan-Pin Lin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CN., Lin, CP., Hsieh, FC. et al. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. World J Microbiol Biotechnol 32, 183 (2016). https://doi.org/10.1007/s11274-016-2143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2143-z

Keywords

Navigation