Skip to main content

Advertisement

Log in

α-1,3-Glucanase: present situation and prospect of research

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

α-1,3-Glucanases hydrolyze α-1,3-glucan which is an insoluble linear α-1,3-linked homopolymer of glucose and these enzymes are classified into two families of glycoside hydrolases on the basis of amino acid sequence similarity; type-71 α-1,3-glucanases found in fungi and type-87 enzymes in bacteria. α-1,3-Glucan (also called ‘mutan’) is a major component of dental plaque formed by oral Streptococci and has important physiological roles in various fungal species, including as a component of cell walls, an endogenous carbon source for sexual development, and a virulent factor. Considering these backgrounds, α-1,3-glucanases have been investigated from the perspectives of applications to dental care and development of cell-wall lytic enzymes. Compared with information regarding other glycoside hydrolases such as amylases, cellulases, chitinases, and β-glucanases, there is limited biochemical and structural information available regarding α-1,3-glucanase. Further research on α-1,3-glucanases on enzyme application to dental care and biological control of pathogenic fungi is expected. In this mini-review, we briefly describe how α-1,3-glucanases are categorized and characterized and present our study findings regarding α-1,3-glucanase from Bacillus circulans KA-304. Furthermore, we briefly discuss potential future applications of α-1,3-glucanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott DW, Ficko-Blean E, van Bueren AL, Rogowski A, Cartmell A, Coutinho PM, Henrissat B, Gilbert HJ, Boraston AB (2009) Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules. Biochemistry 48(43):10395–10404

    Article  CAS  Google Scholar 

  • Ait-Lahsen H, Soler A, Rey M, de La Cruz J, Monte E, Llobell A (2001) An antifungal exo-α-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 67(12):5833–5839

    Article  CAS  Google Scholar 

  • Aoki H, Shiroza T, Hayakawa T, Sato S, Kuramitsu HK (1986) Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53:587–594

    CAS  Google Scholar 

  • Bowen WH (1969) Effects of dextranase on cariogenic and non-cariogenic dextrans. Br Dent J 124:347–349

    Google Scholar 

  • Calo L, García I, Gotor C, Romero LC (2006) Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma α-1,3-glucanase. J Exp Bot 57:3911–3920

    Article  CAS  Google Scholar 

  • Cheng YM, Hsieh FC, Meng M (2009) Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus β-1,3-glucanase. Microb Cell Fact 8(62):1–13

    Google Scholar 

  • Dekker N, Speijer D, Grün CH, van den Berg M, de Haan A, Hochstenbach F (2004) Role of the α-glucanase Agn1p in fission-yeast cell separation. Mol Biol Cell 15(8):3903–3914

    Article  CAS  Google Scholar 

  • Ebisu S, Kato K, Kotani S, Misaki A (1975) Isolation and purification of Flavobacterium alpha-1,3-glucanase-hydrolyzing, insoluble, sticky glucan of Streptococcus mutans. J Bacteriol 124:1489–1501

    CAS  Google Scholar 

  • Fuglsang CC, Berka RM, Wahleitner JA, Kauppinen S, Shuster JR, Ramussen G, Halkier T, Dalboge H, Henrissat B (2000) Biochemical analysis of recombinant fungal mutanasese: a new family of α-1,3-glucanases with novel carbohydrate-binding domains. J Biol Chem 275:2009–2018

    Article  CAS  Google Scholar 

  • Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M (2009) Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol Microbiol 73:553–570

    Article  CAS  Google Scholar 

  • Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M (2012) Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8:e1002882

    Article  CAS  Google Scholar 

  • Grün CH, Dekker N, Nieuwland AA, Klis FM, Kamerling JP, Vliegenthart JF, Hochstenbach F (2006) Mechanism of action of the endo-(1,3)-α-glucanase MutA form the mycoparasitic fungus Trichoderma harzianum. FEBS Lett 580(16):3780–3786

    Article  Google Scholar 

  • Guggenheim B (1970) Enzymatic hydrolysis and structure of water-insoluble glucan produced by glucosyltransferase from a strain of Streptococcus mutans. Helv Odontol Acta 14:89

    CAS  Google Scholar 

  • Guggenheim B, Haller R (1972) Purification and properties of α-(1,3)-glucanohydrolase from Trichoderma harzianum. J Dent Res 51:394–402

    Article  CAS  Google Scholar 

  • Hakamada Y, Sumitomo N, Ogawa A, Kawano T, Saeki K, Ozaki K, Ito S, Kobayashi T (2008) Nucleotide and deduced amino acid sequences of mutanase-like genes from Paenibacillus isolates: proposal of a new family of glycoside hydrolases. Biochimie 90:525–533

    Article  CAS  Google Scholar 

  • Hochstenbach F, Klis FM, Van Den Ende H, Van Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci USA 95:9161–9166

    Article  CAS  Google Scholar 

  • Inoue M, Yakushiji T, Katsuki M, Kudo N, Koga T (1988) Reduction of the adherence of Streptococcus sobrinus insoluble alpha-D-glucan by endo-(1–3)-alpha-D-glucanase. Carbohydr Res 182:277–286

    Article  CAS  Google Scholar 

  • Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A (2002) Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J Biol Chem 277(17):14695–14702

    Article  CAS  Google Scholar 

  • Klis FM (1994) Cell wall assembly in yeast. Yeast 10:851–869

    Article  CAS  Google Scholar 

  • Koga T, Inoue M (1979) Effects of dextranases on cell adherence, glucan-film formation and glucan synthesis by Streptococcus mutans glucosyltransferase. Arch Oral Biol 24:191–198

    Article  CAS  Google Scholar 

  • Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  CAS  Google Scholar 

  • Li YH, Bowden GH (1994) Characterization of accumulation of oral gram-positive bacteria on mucin-conditioned glass surface in a mode system. Oral Microbiol Immunol 9:1–11

    Article  Google Scholar 

  • Matsuda S, Kawanami Y, Takeda H, Ooi T, Kinoshita S (1997) Purification and properties of mutanase from Bacillus circulans. J Ferment Bioeng 83:593–595

    Article  CAS  Google Scholar 

  • Meyer MT, Phaff HJ (1980) Purification and properties of (1-3)-α-glucanases from Bacillus circulans WL-12. J Gen Microbiol 118:197–208

    CAS  Google Scholar 

  • Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59:28–36

    Article  CAS  Google Scholar 

  • Pleszczyńska M, Marek-Kozaczuk M, Wiater A, Szczodrak J (2007) Paenibacillus strain MP-1: a new source of mutanase. Biotechnol Lett 29:755–759

    Article  Google Scholar 

  • Pleszczyńska M, Wiater A, Szczodrak J (2010) Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm. Biotechnol Lett 32:1699–1704

    Article  Google Scholar 

  • Pleszczyńska M, Boguszewska A, Tchorzewski M, Wiater A, Szczodrak J (2012) Gene cloning, expression, and characterization of mutanase from Paenibacillus curdlanolyticus MP-1. Protein Expr Purif 60:68–74

    Article  Google Scholar 

  • Pleszczyńska M, Wiater A, Siwulski M, Szczodrak J (2013) Successful large-scale production of fruiting bodies of Laetiporus sulphureus (Bull.: Fr.) Murrill on an artificial substrate. World J Microbiol Biotechnol 29(4):753–758

    Article  Google Scholar 

  • Potgieter HJ, Alexander MJ (1966) Susceptibility and resistance of several fungi microbial lysis. J Bacteriol 91(4):1526–1532

    CAS  Google Scholar 

  • Rappleye CA, Eissenberg LG, Goldman WE (2007) Histoplasma capsulatum alpha-(1,3)-glucan block innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA 104:1366–1370

    Article  CAS  Google Scholar 

  • Reese AJ, Doering TL (2003) Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol 50:1401–1409

    Article  CAS  Google Scholar 

  • Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an alpha-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499

    Article  CAS  Google Scholar 

  • Schachtele CF, Staat H, Harlander S (1975) Dextranases from oral bacteria: inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans. Infect Immun 12:309–317

    CAS  Google Scholar 

  • Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJC (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27:275–282

    Article  CAS  Google Scholar 

  • Shalom G, Pratten J, Wilson M, Nair SP (2008) Cloning heterologous gene expression and biochemical characterization of the alpha-1,3-glucanase from the filamentous fungus Penicillium purpurogenum. Protein Expr Purif 60(2):170–175

    Article  CAS  Google Scholar 

  • Shimotsuura I, Kigawa H, Ohdera M, Kuramitsu HK, Nakashima S (2008) Biochemical and molecular characterization of a novel type of mutanase from Paenibacillus sp. Strain RM1: identification of its mutan-binding domain, essential for degradation of Streptococcus mutans Biofilms. Appl Environ Microbiol 74(9):2759–2765

    Article  CAS  Google Scholar 

  • Sietsma JH, Wessel JGH (1977) Chemical analysis of the hyphal wall of Schizophyllum commune. Biochem Biophys Acta 496:225–239

    Article  CAS  Google Scholar 

  • Sumitomo N, Saeki K, Ozaki K, Ito S, Kobayashi T (2007) Mutanase from a Paenibacillus isolate: nucleotide sequence of the gene and properties of recombinant enzymes. Biochim Biophys Acta 1770(4):716–724

    Article  CAS  Google Scholar 

  • Suyotha W, Yano S, Takagi K, Rattanakit-Chandet N, Tachiki T, Wakayama M (2013) Domain structure and function of α-1,3-glucanase from Bacillus circulans KA-304, an enzyme essential for degrading basidiomycete cell walls. Biosci Biotechnol Biochem 77(3):639–647

    Article  CAS  Google Scholar 

  • Suyotha W, Yano S, Itoh T, Fujimoto H, Hibi T, Tachiki T, Wakayama M (2014) Characterization of α-1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87. J Biosci Bioeng 118(4):378–385

    Article  CAS  Google Scholar 

  • Takahashi N, Satoh Y, Takamori K (1985) Subcellular localization of D-glucanase in Bacteroides oralis Ig4a. J Gen Microbiol 131:1077–1082

    CAS  Google Scholar 

  • Takehara T, Inoue M, Morioka T, Yokogawa K (1981) Purification and properties of endo-α-1,3-glucanase from a Streptomyces chartreuses strain. J Bacteriol 145:729–735

    CAS  Google Scholar 

  • Terao Y, Isoda R, Murakami J, Hamada S, Kawabata S (2009) Molecular and biological characterization of gtf regulation-associated genes in Streptococcus mutans. Oral Microbiol Immunol 24:211–217

    Article  CAS  Google Scholar 

  • Tsumori H, Kawauti T, Shimamura A, Hanada N, Sakurai Y, Yamakami K (2010) Cloning and expression of the mutanase gene of Paenibacillus humicus from fermented food. J Health Sci 56:456–461

    Article  CAS  Google Scholar 

  • Tsumori H, Shimamura A, Sakurai Y, Yamakami K (2011) Mutanase of Paenibacillus humicus from fermented food has a potential for hydrolysis of biofilms syntheszied by Streptococcus mutans. J Health Sci 57:420–424

    Article  CAS  Google Scholar 

  • Villalobos-Duno H, San-Blas G, Paulinkevicius M, Sánchez-Martín Y, Nino-Vega G (2013) Biochemical characterization of Paracoccidioides brasiliensis α-1,3-glucanase Agn1p, and its functionality by heterologous expression in Schizosaccharomyces pombe. PLoS ONE 8(6):e66853

    Article  CAS  Google Scholar 

  • Wei H, Scherer M, Singh A, Liese R, Fischer F (2001) Aspergillus nidulans a-1,3-glucanase (Mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet Biol 34:217–227

    Article  CAS  Google Scholar 

  • Wiater A, Szczodrak J, Rogalski J (2001) Purification and characterization of an extracellular mutanase of from Trichoderma harzianum. Mycol Res 105:1357–1363

    Article  CAS  Google Scholar 

  • Wiater A, Szczodrak J, Pleszczyńska M (2008) Mutanase induction in Trichoderma harzianum by cell wall of Laetiporus sulphureus and its application for mutan removal from oral biofilms. J Microbiol Biotechnol 18:1335–1341

    CAS  Google Scholar 

  • Yakushiji T, Inoue M, Koga T (1984) Inter-serotype comparison of polysaccharides produced by extracellular enzymes from Streptococcus mutans. Carbohydr Res 127:253–266

    Article  CAS  Google Scholar 

  • Yano S, Yamamoto S, Toge T, Wakayama M, Tachiki T (2003) Occurrence of a specific protein in Basidiomycetelytic enzyme preparation produced by Bacillus circulans KA-304 inductively with a cell-wall preparation of Schizophyllum commune. Biosci Biotechnol Biochem 67:1976–1982

    Article  CAS  Google Scholar 

  • Zonneveld BJ (1972) Morphogenesis in Aspergillus nidulans. The significance of an alpha-1, 3-glucan of the cell wall and alpha-1,3-glucanas for cleistothecium development. Biochim Biophys Acta 273:174–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Wakayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyotha, W., Yano, S. & Wakayama, M. α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 32, 30 (2016). https://doi.org/10.1007/s11274-015-1977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1977-0

Keywords

Navigation