Skip to main content
Log in

Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The regulation of metabolic flux through glycolytic versus the gluconeogenic pathway plays an important role in central carbon metabolism. In this study, we made an attempt to enhance riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. To this end, gapB (code for NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase), fbp (code for fructose-1,6-bisphosphatase) and pckA (code for phosphoenolpyruvate carboxykinase) were overexpressed in parental strain B. subtilis RH33. Compared with RH33, overexpression of fbp and gapB resulted in approximately 18.0 and 14.2 % increased riboflavin production, respectively, while overexpression of pckA obtained the opposite result. Significant enhancement of riboflavin titers up to 4.89 g/l was obtained in shake flask cultures when gapB and fbp were co-overexpressed, nevertheless the specific growth rate decreased slightly and the specific glucose uptake rate remained almost unchanged. An improvement by 21.9 and 27.8 % of the riboflavin production was achieved by co-overexpression of gapB and fbp in shake flask and fed-batch fermentation, respectively. These results imply that deregulation of gluconeogenesis is an effective strategy for production of metabolites directly stemming from the pentose phosphate pathway as well as other NADPH-demanding compounds with glucose as carbon source in B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PPP:

Pentose phosphate pathway

Ru5P:

Ribulose-5P

FBPase:

Fructose 1,6-bisphosphatase

MM:

Minimal medium

CDW:

Cell dry weight

TCA:

Tricarboxylic acid

PEP:

Phosphoenolpyruvate

References

  • Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Medigue C, Danchin A (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155(Pt 6):1758–1775

    Article  CAS  Google Scholar 

  • Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71(12):8587–8596

    Article  CAS  Google Scholar 

  • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109

    Article  CAS  Google Scholar 

  • Blencke HM, Homuth G, Ludwig H, Mader U, Hecker M, Stulke J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5(2):133–149

    Article  CAS  Google Scholar 

  • Coquard D, Huecas M, Ott M, van Dijl JM, van Loon AP, Hohmann HP (1997) Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 254(1):81–84

    Article  CAS  Google Scholar 

  • Dauner M, Bailey JE, Sauer U (2001a) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76(2):144–156

    Article  CAS  Google Scholar 

  • Dauner M, Storni T, Sauer U (2001b) Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol 183(24):7308–7317

    Article  CAS  Google Scholar 

  • Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wuthrich K, Hohmann HP, Sauer U, Bailey JE (2002) Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol 68(4):1760–1771

    Article  CAS  Google Scholar 

  • Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85(6):1907–1914

    Article  CAS  Google Scholar 

  • Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275(19):14031–14037

    Article  CAS  Google Scholar 

  • Fischer M, Haase I, Kis K, Meining W, Ladenstein R, Cushman M, Schramek N, Huber R, Bacher A (2003) Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase. J Mol Biol 326(3):783–793

    Article  CAS  Google Scholar 

  • Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y (1998) Identification and expression of the Bacillus subtilis fructose-1, 6-bisphosphatase gene (fbp). J Bacteriol 180(16):4309–4313

    CAS  Google Scholar 

  • Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M (2011) RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 11:119

    Article  CAS  Google Scholar 

  • Humbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon APGM (1999) GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22(1):1–7

    Article  CAS  Google Scholar 

  • Jules M, Le Chat L, Aymerich S, Le Coq D (2009) The Bacillus subtilis ywjI (glpX) gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the class III Fbp enzyme. J Bacteriol 191(9):3168–3171

    Article  CAS  Google Scholar 

  • Kalingan AE, Liao CM (2002) Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 82(3):219–224

    Article  CAS  Google Scholar 

  • Lehmann M, Degen S, Hohmann HP, Wyss M, Bacher A, Schramek N (2009) Biosynthesis of riboflavin: screening for an improved GTP cyclohydrolase II mutant. FEBS J 276(15):4119–4129

    Article  CAS  Google Scholar 

  • Li XJ, Chen T, Chen X, Zhao XM (2006) Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis. Appl Microbiol Biotechnol 73(2):374–383

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee NP, Williams V, Rufo GA, Hatch R, Pero J (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22(1):8–18

    Article  CAS  Google Scholar 

  • Ruhl M, Zamboni N, Sauer U (2010) Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Biotechnol Bioeng 105(4):795–804

    Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29(4):765–794

    Article  CAS  Google Scholar 

  • Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, van Loon AP, Bailey JE (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62(10):3687–3696

    CAS  Google Scholar 

  • Sauer U, Cameron DC, Bailey JE (1998) Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng 59(2):227–238

    Article  CAS  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17

    Article  CAS  Google Scholar 

  • Servant P, Le Coq D, Aymerich S (2005) CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 55(5):1435–1451

    Article  CAS  Google Scholar 

  • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009a) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11(4–5):243–252

    Article  CAS  Google Scholar 

  • Shi SB, Shen Z, Chen X, Chen T, Zhao XM (2009b) Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 46(1):28–33

    Article  CAS  Google Scholar 

  • Sklyarova SA, Kreneva RA, Perumov DA, Mironov AS (2012) The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon. Russ J Genet 48(10):967–974

    Article  CAS  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53(5):509–516

    Article  CAS  Google Scholar 

  • Tannler S, Fischer E, Le Coq D, Doan T, Jamet E, Sauer U, Aymerich S (2008a) CcpN controls central carbon fluxes in Bacillus subtilis. J Bacteriol 190(18):6178–6187

    Article  CAS  Google Scholar 

  • Tannler S, Zamboni N, Kiraly C, Aymerich S, Sauer U (2008b) Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 10(5):216–226

    Article  CAS  Google Scholar 

  • Wang Z, Chen T, Ma X, Shen Z, Zhao X (2011) Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol 102(4):3934–3940

    Article  CAS  Google Scholar 

  • Wu QL, Chen T, Gan Y, Chen X, Zhao XM (2007) Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biotechnol 76(4):783–794

    Article  CAS  Google Scholar 

  • Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29(3):683–692

    Article  CAS  Google Scholar 

  • Zamboni N, Mouncey N, Hohmann H-P, Sauer U (2003) Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab Eng 5(1):49–55

    Article  CAS  Google Scholar 

  • Zhu Y, Chen X, Chen T, Zhao X (2007) Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. FEMS Microbiol Lett 266(2):224–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhenquan Lin for the help of qRT-PCR analysis. This work was supported by National Program on Key Basic Research Project (2011CBA00804, 2012CB725203), National Natural Science Foundation of China (NSFC-21206112, NSFC-21176182), National High-tech R&D Program of China (2012AA022103, 2012AA02A702) and the Innovation Foundation of Tianjin University (1308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Wang.

Additional information

Guanglu Wang and Ling Bai have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Bai, L., Wang, Z. et al. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis . World J Microbiol Biotechnol 30, 1893–1900 (2014). https://doi.org/10.1007/s11274-014-1611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1611-6

Keywords

Navigation