Skip to main content

Advertisement

Log in

Comparison of the kinetics of lipopeptide production by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation under isothermal and non-isothermal conditions

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to compare the kinetics of lipopeptide production in solid-state fermentation (SSF) under isothermal and non-isothermal conditions. Models based on the logistic, modified Gompertz and Luedeking–Piret-like equations were developed to describe the time course of fermentation under different conditions. The experiments were conducted in 250 mL flasks and a 50 L fermenter. The results showed that the non-isothermal process had higher levels of product formation rate and substrate utilization rate compared to the isothermal process. The part of substrate carbon to meet microbial maintenance—energy, biomass and lipopeptides formation requirements got increased using the non-isothermal technique. In addition, fermenter conditions positively influenced the lipopeptides formation rate with significantly higher levels of substrate for the microbial growth and product formation, though the product productivity and biomass both decreased as compared to flask. This is the first report that investigates the effects of temperature changing on the kinetics of lipopeptide production by Bacillus amyloliquefaciens strain under SSF condition using soybean flour and rice straw as major substrates in flask and in fermenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altiok D, Tokatli F, Harsa S (2006) Kinetic modeling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). J Chem Technol Biotechnol 81:1190–1197

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants biological and immunological molecules. Curr Opin Microbiol 7:262–266

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon souce: some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • Dodić JM, Vučurović DG, Dodić SN, Grahovac JA, Popov SD, Nedeljković NM (2012) Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl Energy 99:192–197

    Article  CAS  Google Scholar 

  • Fujikawa H, Kai A, Morozumi SA (2004) A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol 21:501–509

    Article  Google Scholar 

  • Hashemi M, Mousavi SM, Razavi SH, Shojaosadati SA (2011) Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochem Eng J 53:159–164

    Article  CAS  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314

    Article  CAS  Google Scholar 

  • Hensing MCM, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 67:261–279

    Article  CAS  Google Scholar 

  • Holker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8:301–306

    Article  CAS  Google Scholar 

  • Ikasari L, Mitchell DA, Stuart DM (1999) Response of Rhizopus oligosporus to temporal temperature profiles in a model solid-state fermentation system. Biotechnol Bioeng 64:722–728

    Article  CAS  Google Scholar 

  • Mazutti MA, Zabot G, Boni G, Skovronski A, de Oliveira D, Di Luccio M, Rodrigues MI, Mauqeri F, Treichel H (2010) Mathematical modeling of Kluyveromyces marxianus growth in solid-state fermentation using a packed-bed bioreactor. J Ind Microbiol Biotechnol 37:391–400

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2006) Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol 72:869–875

    Article  CAS  Google Scholar 

  • Mu Y, Wang G, Yu HQ (2006) Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol 97:1302–1307

    Article  CAS  Google Scholar 

  • Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8581

    Article  CAS  Google Scholar 

  • Özilgen M (1998) Kinetics of multiproduct acidogenic and solventogenic batch fermentations. Appl Microbiol Biotechnol 29:536–543

    Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. I-Bioprocess-products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Prabhakar A, Krishnaiah K, Janaun J, Bono A (2005) An overview of engineering aspects of solid-state fermentation. Malays J Microbiol 1:10–16

    Google Scholar 

  • Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  • Sella SR, Dlugokenski RE, Guizelini BP, Vandenberghe LP, Medeiros AB, Pandey A, Soccol CR (2008) Selection and optimization of Bacillus atrophaeus inoculum medium and its effect on spore yield and thermal resistance. Appl Biochem Biotechnol 151:380–392

    Article  CAS  Google Scholar 

  • Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloid Surf B 85:174–181

    Article  CAS  Google Scholar 

  • Tsuge K, Ohata Y, Shoda M (2001) Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 45:3566–3573

    Article  CAS  Google Scholar 

  • Van Ginkel S, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730

    Article  CAS  Google Scholar 

  • Votruba J, Volesky B, Yerushalmi L (1985) Mathematical model of batch acetone–butanol fermentation. Biotechnol Bioeng 28:247–255

    Article  Google Scholar 

  • Wachenheim DE, Patterson JA, Ladisch MR (2003) Analysis of the logistic function model: derivation and applications specific to batch cultured microorganisms. Bioresour Technol 86:157–164

    Article  CAS  Google Scholar 

  • Yalcin SK, Özbas ZY (2005) Determination of growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Kalecik 1 in different substrate media. World J Microbiol Biotechnol 21:1303–1310

    Article  CAS  Google Scholar 

  • Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang GY, Luo Y, Ran W, Shen QR (2012) Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour Technol 112:254–260

    Article  CAS  Google Scholar 

  • Zhu Z, Li R, Yu GH, Ran W, Shen QR (2013a) Enhancement of lipopepitdes production in a two-temperature-stage process under SSF conditions and its bioprocess in the fermenter. Bioresour Technol 127:209–215

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang FG, Wei Z, Ran W, Shen QR (2013b) The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Manag 127:96–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Technology Support Program (Grant No. 2013BAD08B04-7), Innovative Research Team Develoment Plan of the Ministry of Education of China (IRT256), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and the 111 Project (B12009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Sun, L., Huang, X. et al. Comparison of the kinetics of lipopeptide production by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation under isothermal and non-isothermal conditions. World J Microbiol Biotechnol 30, 1615–1623 (2014). https://doi.org/10.1007/s11274-013-1587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1587-7

Keywords

Navigation