Skip to main content
Log in

An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The main aim of this work was to study molecular characterization of a DNA fragment conferring resistance to Cu(II) in Sinorhizobium meliloti CCNWSX0020. The strain CCNWSX0020, resistant to 1.4 mmol l−1 Cu(II) in tryptone-yeast extract medium was isolated from Medicago lupulina growing in mine tailings of Fengxian County, China. The availability of the complete genome sequence of S. meliloti CCNWSX0020 provides an opportunity for investigating genes that play significant roles in Cu(II) resistance. A copper resistance gene, with a length of 1,445 bp, encoding 481 amino acids, designated omp, was identified by cDNA-amplified fragment length polymorphism from S. meliloti CCNWSX0020. The expression of omp gene strongly increased in the presence of Cu(II). The omp-defective mutants display sensitivities to Cu(II) compared with their wild types. The Cu(II)-sensitive phenotype of the mutant was complemented by a 1.5-kb DNA fragment containing omp gene. BLAST analysis revealed that this gene encoded a hypothetical outer membrane protein with 75 % similarity to outer membrane efflux protein in Rhizobium leguminosarum bv. viciae 3841. These studies suggested that the omp product was involved in the Cu(II) tolerance of S. meliloti CCNWSX0020.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beswick PH, Hall GH, Hook AJ, Little K, McBrien DC (1976) Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact 14:347–356

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Pal TK, Basumajumdar A (2009) Modulation of enzyme activities of a lead-adapted strain of Rhizopus arrhizus during bioaccumulation of lead. Folia Microbiol 54(6):505–508

    Article  CAS  Google Scholar 

  • Chen CM, Liu MC (2006) Ecological risk assessment on a cadmium contaminated soil landfill a preliminary evaluation based on toxicity tests on local species and site-specific information. Sci Total Environ 359:120–129

    Article  CAS  Google Scholar 

  • Dinh T, Paulsen IT, Saier MH (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176:3825–3831

    CAS  Google Scholar 

  • Fan LM, Ma ZQ, Lang JQ, Li HF, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709

    Article  CAS  Google Scholar 

  • Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147

    Article  CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2011) Development of a model to select plants with optimum metal phytoextraction potential. Environ Sci Pollut Res Int 18:997–1003

    Article  CAS  Google Scholar 

  • Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S (1997) Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochem Biophys Res Commun 234:516–521

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Matuszewska E, Kwiatkowska J, Kuczynska-Wisnik D, Laskowska E (2008) Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology 154:1739–1747

    Article  CAS  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Oleszczuk P (2007) The evaluation of sewage sludge and compost toxicity to Heterocypris incongruens in relation to inorganic and organic contaminants content. Environ Toxicol 22:587–596

    Article  CAS  Google Scholar 

  • Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  Google Scholar 

  • Petersen C, Moller LB (2000) Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261:289–298

    Article  CAS  Google Scholar 

  • Pope CR, Flores AG, Kaplan JH, Unger VM (2012) Structure and function of copper uptake transporters. Curr Top Membr 69:97–112

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  Google Scholar 

  • Rivas R, Vizcaino N, Buey RM, Mateos PF, Martinez-Molina E, Velazquez E (2001) An effective, rapid and simple method for total RNA extraction from bacteria and yeast. J Microbiol Methods 47:59–63

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Google Scholar 

  • Shore RF, Casulli A, Bologov V, Wienburg CL, Afsar A, Toyne P, Dell’Omo G (2001) Organochlorine pesticide, polychlorinated biphenyl and heavy metal concentrations in wolves (Canis lupus L. 1758) from north-west Russia. Sci Total Environ 280:45–54

    Article  CAS  Google Scholar 

  • Steele KW, Bonish PM, Daniel RM, O’Hara GW (1983) Effect of rhizobial strain and host plant on nitrogen isotopic fractionation in legumes. Plant Physiol 72:1001–1004

    Article  CAS  Google Scholar 

  • Teixeira EC, Franco de Oliveira JC, Marques Novo MT, Bertolini MC (2008) The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: gene inactivation results in copper sensitivity. Microbiology 154:402–412

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth-promoting rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequencing of the M13mp18 and pUC9 vectors. Gene 33:103–119

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (31125007, 31270012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehong Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Lu, M. & Wei, G. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020. World J Microbiol Biotechnol 29, 1655–1660 (2013). https://doi.org/10.1007/s11274-013-1328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1328-y

Keywords

Navigation