Skip to main content
Log in

Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov.

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study reports the purification and biochemical characterization of a raw starch-digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. (strain PizzoT). The molecular weight was estimated to be 58 kDa by SDS–PAGE. The enzyme was highly active over a wide range of pH from 4.0–10.0. The optimum temperature of the enzyme was 70°C. It showed extreme thermostability in the presence of Ca2+, retaining 50% of its initial activity after 90 h at 70°C. The enzyme efficiently hydrolyzed 20% (w/v) of raw starches, concentration normally used in starch industries. The α-amylase showed an high stability in presence of many organic solvents. In particular the residual activity was of 73% in presence of 15% (v/v) ethyl alcohol, which corresponds to ethanol yield in yeast fermentation process. By analyzing its complete amyA gene sequence (1,542 bp), the enzyme was proposed to be a new α-amylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baras J, Gaćeša S, Pejin D (2002) Ethanol is a strategic raw material. Chem Ind 56:89–105

    CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Berekaa MM, Soliman NA, Abdel-Fattah YR (2007) Production, partial characterization and cloning of thermostable α-amylase of a thermophile Geobacillus thermoleovorans YN. Biotechnol 6:175–183

    Article  CAS  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brumm PJ, Nebeda RE, Teague WM (1988) Purification and properties of a new, commercial, thermostable Bacillus stearothermophilus alpha-amylase. Food Biotechnol 2:67–80

    Article  CAS  Google Scholar 

  • Dettori-Campus BG, Priest FG, Stark JR (1992) Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem 27:17–21

    Article  CAS  Google Scholar 

  • Dheeran P, Kumar S, Jaiswal YK, Adhikari DK (2010) Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Appl Microbiol Biotechnol 86:1857–1866

    Article  CAS  Google Scholar 

  • Egas MCV, da Costa MS, Cowan DA, Pires EMV (1998) Extracellular α-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles 2:23–32

    Article  CAS  Google Scholar 

  • Ezeji TC, Bahl H (2006) Purification, characterization, and synergistic action of phytate-resistant α-amylase and α -glucosidase from Geobacillus thermodenitrificans HRO10. J Biotechnol 125:27–38

    Article  CAS  Google Scholar 

  • Goyal N, Gupta JK, Soni SK (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37:723–734

    Article  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Haseltine C, Rolfsmeier M, Blum P (1996) The glucose effect and regulation of alpha-amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 178:945–950

    CAS  Google Scholar 

  • Hiller P, Wase DAJ, Emery AN (1996) Production of α-amylase by B amyloliquifaciens in batch and continuous culture using a defined synthetic medium. Biotechnol Lett 18:795–799

    Article  Google Scholar 

  • Hyun HH, Zeikus JG (1985) General biochemical characterization of thermostable extracellular beta-amylase from Clostridium thermosulfurogenes. Appl Environ Microbiol 49:1162–1167

    CAS  Google Scholar 

  • Itkor P, Tsukagoshi N, Udaka S (1989) Purification and properties of divalent cation-dependent raw-starch-digesting α-amylase from Bacillus sp. B1018. J Ferment Bioeng 68:247–251

    Article  CAS  Google Scholar 

  • Kelly CT, McTigue MA, Doyle EM, Fogarty WM (1995) The raw starch-degrading alkaline amylase of Bacillus sp. IMD 370. J Ind Microbiol 15:446–448

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crops residues. Biomass Bioen 26:361–375

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lama L, Nicolaus B, Trincone A, Morzillo P, Calandrelli V, Gambacorta A (1991) Thermostable amylolitic activity from Sulfolobus solfataricus. Biotech Forum Europe 8:201–203

    CAS  Google Scholar 

  • Liu XD, Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour Technol 99:315–4320

    Google Scholar 

  • Mark R, Hardy R, Townsend R, Lee YC (1988) Monosaccharide analysis of glicoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem 170:54–62

    Article  Google Scholar 

  • Martìnez TF, Alarcòn FJ, Dìaz-Lòpez M, Moyano FJ (2000) Improved detection of amylase activity by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with copolymerized starch. Electrophoresis 21:2940–2943

    Article  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    CAS  Google Scholar 

  • Rao JLUM, Satyanarayana T (2003) Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent α-amylase production by an estreme thermophile Geobacillus thermoleovorans using response surface methodology. J Appl Microbiol 95:712–718

    Article  CAS  Google Scholar 

  • Rao JLUM, Satyanarayana T (2007) Purification and characterization of a hyperthermostable and high maltogenic α-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 142:179–193

    Article  CAS  Google Scholar 

  • Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbiol 51:183–189

    Article  CAS  Google Scholar 

  • Shafiei M, Ziaee A-A, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochemistry 45:694–699

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-Amylases from microbial sources. An Overview on Recent Developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160:988–1003

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been financed partially under the bilateral agreement of Italian and Turkish governments through project no: TBAG-U/192(106T756) and Ministry of Foreign Affairs-Italian MFA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licia Lama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finore, I., Kasavi, C., Poli, A. et al. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov.. World J Microbiol Biotechnol 27, 2425–2433 (2011). https://doi.org/10.1007/s11274-011-0715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0715-5

Keywords

Navigation