Skip to main content
Log in

Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Epiphytic yeasts isolated from the surface of citrus fruits, harvested in several orchards in the Souss-Massa-Drâa Valley, Agadir, Morocco, were in vivo screened for antagonistic activity against Penicillium digitatum, the causal agent of green mold of citrus. From a total of 245 yeast strains assessed for their biocontrol activity against P. digitatum, fifteen reduced the incidence of disease to less than 50%. The effectiveness of the best selected yeast strains showed that Pichia anomala (YT73), Debaryomyces hansenii (YT22) and Hanseniaspora guilliermondii (YT13) were the most effective, with a reduction of green mold incidence from 65 to ~80%, compared to the control. The identification of the fifteen selected yeast strains was carried out through an integrated approach including phenotypic and genotypic (sequencing of D1/D2 domain of 26S rDNA encoding gene) methods. These 15 selected were identified as: H. guilliermondii, D. hansenii, H. uvarum and P. anomala. The study of the dynamics of two of the best strains, H. guilliermondii and D. hansenii, showed that these strains can grow rapidly, by approximately 2 log units, in citrus fruit wounds. Such rapid growth in wounds indicates that these antagonist yeasts are excellent colonizers of citrus wounds and can thrive on citrus fruits as a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arroyo-Lopez FN, Duran-Quintana MC, Ruiz-Barba JL, Querolb A, Garrido-Fernandeza A (2006) Use of molecular methods for the identification of yeast associated with table olives. Food Microbiol 23:791–796. doi:10.1016/j.fm.2006.02.008

    Article  CAS  Google Scholar 

  • Bancroft MC, Gardner PD, Eckert JW, Baritelle JL (1984) Comparison of decay control strategies in California lemon packinghouses. Plant Dis 68:24–28. doi:10.1094/PD-69-24

    Article  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  • Bus VG, Bongers AJ, Risse LA (1997) Occurrence of Penicillium digitatum and Penicillium italicum resistant to benomyl, thiabendazole, and imazalil on citrus fruit from different geographic origin. Plant Dis 75:1098–1100

    Google Scholar 

  • Chalutz E, Wilson CL (1990) Postharvest biocontrol of Green and blue and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis 74:134–137. doi:10.1094/PD-74-0134

    Article  Google Scholar 

  • Droby S, Chalutz E, Wilson CL, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35:794–800

    Article  Google Scholar 

  • Eckert JW (1990) Impact of fungicide resistance on citrus fruit decay control. ACS Symposium Series. American Chemical Society, Washington, DC, pp 286–302

    Google Scholar 

  • Eckert JW, Eaks IL (1989) Postharvest disorders and diseases of citrus fruits. In: Calavan EC, Carman GE (eds) The citrus industry, vol 4. University of California Press, Berkeley, pp 179–269

    Google Scholar 

  • Eckert JW, Sievert JR, Ratnayake M (1994) Reduction of imazalil effectiveness against citrus green mold in California packinghouses by resistant biotypes of Penicillium digitatum. Plant Dis 78:971–974

    CAS  Google Scholar 

  • El-Ghaouth A, Smilanick J, Wisniewski M, Wilson CL (2000) Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-Deoxy–d-Glucose. Plant Dis 84:249–253. doi:10.1094/PDIS.2000.84.3.249

    Article  CAS  Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski ME, Droby S, Smilanick JL, Korsten L (2002) Biological control of postharvest diseases of citrus fruits. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 288–312

    Google Scholar 

  • Elkhamass M, Oulahcen B, Lekchiri A, Sebbata A, Charhabaili Y (1994) Stratégie de lutte contre les maladies de post-récolte des fruits d’agrumes. In: Ait Oubahou A, El-otmani M (eds) Postharvest Pathology and technology for Horticultural Commodities: Recent advances. Institut Agronomique et Vétérinaire Hassan II, Agadir, Maroc, pp 388–398

    Google Scholar 

  • Guinebretiere MH, Nguyen-The C, Morrison N, Reich M, Nicot P (2000) Isolation and characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on Strawberry Fruits. J Food Protect 3:386–394

    Google Scholar 

  • Hernandez A, Martin A, Aranda E, Perez-Nevado F, Cordoba MG (2006) Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol 24:346–351. doi:10.1016/j.fm.2006.07.022

    Article  CAS  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol Potential of Metchnikowia pulcherrima Strains against Blue Mold of Apple. Phytopathology 91:1098–1108. doi:10.1094/PHYTO.2001.91.11.1098

    Article  CAS  Google Scholar 

  • Karabulut OA, Baykal N (2003) Biological control of postharvest diseases of peaches and nectarines by yeasts. J Phytopathol 151:130–134. doi:10.1046/j.1439-0434.2003.00690.x

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1997) Identification of clinically important Ascomycetous yeasts based on nucleotide divergence in the 5 end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371. doi:10.1023/A:1001761008817

    Article  CAS  Google Scholar 

  • Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae isunusually polymorphic. FEM Yeast Res 1571:1–6

    Google Scholar 

  • Lima G, Ippolito A, Nigro F, Salerno M (1997) Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178. doi:10.1016/S0925-5214(96)01302-6

    Article  Google Scholar 

  • Mari M, Guizzardi M (1998) The postharvest phase: Emerging technologies for the control of fungal diseases. Phytoparasitica 1:59–66

    Google Scholar 

  • Marquina D, Peres C, Caldas FV, Marques JF, Peinado JM, Spencer Martin J (1992) Characterization of the yeast population in olive brines. Lett Appl Microbiol 14:279–283. doi:10.1111/j.1472-765X.1992.tb00705.x

    Article  Google Scholar 

  • Masoud W, Høj Kaltoft C (2006) The effects of yeasts involved in the fermentation of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Int J Food Microbiol 106:229–234. doi:10.1016/j.ijfoodmicro.2005.06.015

    Article  CAS  Google Scholar 

  • Nunes C, Usall J, Teixido N, Vinas I (2001) Biological control of postharvest pear diseases using a bacterium Pantoea agglomerans CPA-2. Int J Food Microbiol 70:53–61. doi:10.1016/S0168-1605(01)00523-2

    Article  CAS  Google Scholar 

  • ORMVA official agricultural data (2003) Notes de l’office national de mise en valeur agricole du Souss-Massa. Service de production agricole, Maroc

    Google Scholar 

  • Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14:124–129

    CAS  Google Scholar 

  • Rendall-Dunn AJ (1991) General news. Postharvest. News and Information 2, 3 pp

  • Usall J, Teixido N, Torres R, Eribe XO, Viñas I (2001) Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biol Technol 21:147–156

    Article  Google Scholar 

  • Vero S, Mondino P, Burgueno J, Soubes M, Wisniewski M (2002) Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biol Technol 26:91–98

    Article  Google Scholar 

  • Vinas I, Usall J, Teixido N, Sanchis V (1998) Biological control of major postharvest pathogens on apple with Candida sake. Int J Food Microbiol 40:9–16

    Article  CAS  Google Scholar 

  • Wilson CL, Chalutz E (1989) Postharvest biological control of Penicillium rots of citrus with antagonistic yeasts and bacteria. Scientia Horticulturae 40:105–112

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (1992) Future alternatives to synthetic fungicides for the control of postharvest diseases. In: Tjames ES et al (eds) Biological control of plant diseases. Plenum Press, New York, pp 133–138

  • Wilson CL, Franklin JD, Pusey PL (1987) Biological control of Rhizopus rot of peach with Enterobacter cloacae. Phytopathology 77:303–305

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME, Droby S, Chalutz E (1993) A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae 53:183–189

    Article  Google Scholar 

  • Yu T, Li YH, Zheng XD (2007) Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections. Int J Food Microbiol 114:261–266

    Article  CAS  Google Scholar 

  • Zheng XD, Zhang HY, Sun P (2005) Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis. Eur Food Res Technol 220:353–357

    Article  CAS  Google Scholar 

  • Zheng X, Yu T, Chen R, Huang B, Chi-Hua WV (2007) Inhibiting Penicillium expansum infection on pear fruit by Cryptococcus laurentii and cytokinin. Postharvest Biol Technol 45:221–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Boubaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taqarort, N., Echairi, A., Chaussod, R. et al. Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J Microbiol Biotechnol 24, 3031–3038 (2008). https://doi.org/10.1007/s11274-008-9849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9849-5

Keywords

Navigation