Skip to main content
Log in

Carbon fluxes in forested bog margins along a human impact gradient: could vegetation structure be used as an indicator of peat carbon emissions?

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Bog ecosystems are sensitive to anthropogenic disturbance, including drainage and air pollution. Carbon (C) balance measurements to determine the effect of disturbance on bog functioning are laborious; therefore reliable proxies for C fluxes that could facilitate upscaling from single studies to a larger scale would be valuable. We measured peat CO2 emissions (R s), CH4 efflux and vegetation characteristics in four bog areas that formed a gradient from pristine to severely disturbed peatlands, affected by drainage, peat mining, alkaline air pollution and underground oil-shale mining. We expected that sites experiencing higher human impact (i.e., the vegetation was more distinct from that of a natural bog) would have higher R s and lower CH4 emissions, but differences in peat C emissions between the most disturbed and pristine sites were not significant. Growing period median R s ranged from 0.5 to 2.2 g C m−2 day−1 for our plots; methane emissions, measured from July to December were an order of magnitude lower, ranging from −5.9 to 126.7 mg C m−2 day−1. R s and CH4 emissions were primarily determined by water table depth, as was tree stand productivity. Therefore, stand structural parameters could potentially be good indicators of soil C emissions from poorly drained forested bogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bååth E, Frostegård Å, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031

    PubMed Central  PubMed  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Glob Biogeochem Cycles 13:81–91. doi:10.1029/1998GB900021

    Article  CAS  Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598. doi:10.1046/j.1365-2486.2001.00433.x

    Article  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10:111–134

    Article  CAS  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389. doi:10.1073/pnas.0606629104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bubier JL, Moore TR, Bellisario L, Comer NT, Crill PM (1995) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Glob Biogeochem Cycles 9:455–470. doi:10.1029/95GB02379

    Article  CAS  Google Scholar 

  • Byrne KA, Farrell EP (2005) The effect of afforestation on soil carbon dioxide emissions in blanket peatland in Ireland. Forestry 78:217–227. doi:10.1093/forestry/cpi020

    Article  Google Scholar 

  • Cedro A, Lamentowicz M (2008) The last hundred years’ dendroecology of Scots pine (Pinus sylvestris L.) on a baltic bog in northern Poland: human impact and hydrological changes. Baltic For 14:26–33

    Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89. doi:10.1007/s10750-011-0729-x

    Article  CAS  Google Scholar 

  • Dias ATC, Hoorens B, Van Logtestijn RSP, Vermaat JE, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use changes. Ecosystems 13:526–538

    Article  CAS  Google Scholar 

  • Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Edwards NT (1982) The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 23:321–330

    CAS  Google Scholar 

  • Ewel KC, Cropper WP Jr, Gholz HL (1987) Soil CO2 evolution in Florida slash pine plantations. I. Changes through time. Can J For Res 17:325–329

    Article  Google Scholar 

  • Finér L (1991) Effect of fertilization on dry mass accumulation and nutrient cycling in Scots pine on an ombrotrophic bog. Acta For Fenn 223:1–42

    Google Scholar 

  • Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112. doi:10.1023/A:1006351118347

    Article  CAS  Google Scholar 

  • Giraudoux P (2012) pgirmess: data analysis in ecology. R package version 1.5.6. http://cran.r-project.org/web/packages/pgirmess/index.html

  • Grogan P (1998) CO2 flux measurement using soda lime: correction for water formed during CO2 adsorption. Ecology 79:1467–1468

    Article  Google Scholar 

  • Hökkä H, Repola J, Laine J (2008) Quantifying the interrelationship between tree stand growth rate and water table level in drained peatland sites within central Finland. Can J For Res 38:1775–1783. doi:10.1139/X08-028

    Article  Google Scholar 

  • Ilomets M (1974) Some results of measuring the growth of Sphagnum. In: Kumari E (ed) Estonian wetlands and their life. Valgus, Tallinn, pp 191–203

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, London

  • Ivarson K (1977) Changes in decomposition rate, microbial population and carbohydrate content of an acid peat bog after liming and reclamation. Can J Soil Sci 57:129–137

    Article  CAS  Google Scholar 

  • Janssens IA, Kowalski AS, Longdoz B, Ceulemans R (2000) Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiol 20:23–32

    Article  PubMed  Google Scholar 

  • Kaasik M, Ploompuu T, Ots R, Meier E, Ohvril H, Okulov O, Teral H, Neiman L, Russak V, Kallis A, Post P (2008) Growth acceleration of Pinus sylvestris in bog stands due to intensified nutrient influx from the atmosphere. Oil Shale 25:75–93. doi:10.3176/oil.2008.1.08

    Article  Google Scholar 

  • Kannukene L, Kask M (1982) A preliminary list of bryophytes of Estonian peatlands. In: Masing V (ed) Peatland ecosystems. Valgus, Tallinn, pp 34–38

    Google Scholar 

  • Karofeld E (1994) Human impact on bogs. In: Punning JM (ed) The influence of natural and anthropogenic factors on the development of landscapes. The results of a comprehensive study in NE Estonia. Institute of Ecology, Estonian Academy of Sciences, Tallinn, pp 135–151

    Google Scholar 

  • Karofeld E (1996) The effects of alkaline fly ash precipitation on the Sphagnum mosses in Niinsaare bog, NE Estonia. Suo 47:105–114

    Google Scholar 

  • Karofeld E, Ilomets M (2008) On the impact of oil shale mining and processing on mires in northeast Estonia. IMCG Newslett 1:10–11

    Google Scholar 

  • Karofeld E, Vellak K, Marmor L, Paal J (2007) The influence of alkaline dust input on the bogs in north-east Estonia. For Stud 47:47–71 (in Estonian with english summary)

    Google Scholar 

  • Kask M (1982) A list of vascular plants of Estonian peatlands. In: Masing V (ed) Peatland ecosystems. Valgus, Tallinn, pp 39–49

    Google Scholar 

  • Keith H, Wong SC (2006) Measurement of soil CO2 efflux using soda lime absorption: both quantitative and reliable. Soil Biol Biochem 38:1121–1131. doi:10.1016/j.soilbio.2005.09.012

    Article  CAS  Google Scholar 

  • Kimmel K, Kull A, Salm JO, Mander U (2009) The status, conservation and sustainable use of Estonian wetlands. Wetlands Ecol Manag 18:375–395. doi:10.1007/s11273-008-9129-z

    Article  Google Scholar 

  • Laasasenaho J (1982) Taper curve and volume functions for pine, spruce and birch. Commun Inst For Fenn 108:1–74

    Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629. doi:10.1007/s10021-003-0131-2

    Article  CAS  Google Scholar 

  • Laiho R, Laine J (1994) Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand J For Res 9:251–260

    Article  Google Scholar 

  • Laiho R, Sallantaus T, Laine J (1999) The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–181

    Article  Google Scholar 

  • Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17:1–22

    Article  Google Scholar 

  • Laine J (1989) Classification of peatlands drained for forestry. Suo 40:37–51 (in Finnish with English summary)

    Google Scholar 

  • Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Laine J, Laiho R, Minkkinen K, Vasander H (2006) Forestry and boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies 188. Springer, Berlin, pp 331–357

    Chapter  Google Scholar 

  • Liblik V, Pensa M, Rätsep A (2003) Air pollution zones and harmful pollution levels of alkaline dust for plants. Water Air Soil Pollut Focus 3:193–203

    Article  CAS  Google Scholar 

  • Lohila A, Minkkinen K, Aurela M, Tuovinen J-, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi:10.5194/bg-8-3203-2011

    Article  CAS  Google Scholar 

  • Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703. doi:10.1016/j.soilbio.2009.01.004

    Article  Google Scholar 

  • Martikainen PJ, Nykänen H, Alm J, Silvola J (1995) Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 168–169:571–577. doi:10.1007/BF00029370

    Article  Google Scholar 

  • Metsa korraldamise juhend (Forest Management Guide) (2009) Estonian Ministry of the Environment, Regulation No 2 from 16.01.2009. Appendix to the State Gazette (RTL) 2009, 9, 104 (in Estonian)

  • Minkkinen K, Laine J (1998) Effect of forest drainage on the peat bulk density of pine mires in Finland. Can J For Res 28:178–186

    Article  Google Scholar 

  • Minkkinen K, Laine J (2006) Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant Soil 285:289–304. doi:10.1007/s11104-006-9016-4

    Article  CAS  Google Scholar 

  • Minkkinen K, Vasander H, Jauhiainen S, Karsisto M, Laine J (1999) Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 207:107–120

    Article  Google Scholar 

  • Minkkinen K, Laine J, Hökkä H (2001) Trees stand development and carbon sequestration and drained peatland stands in Finland—a simulations study. Silva Fenn 35:55–69

    Google Scholar 

  • Minkkinen K, Penttilä T, Laine J (2007a) Tree stand volume as a scalar for methane fluxes in forestry-drained peatlands in Finland. Boreal Environ Res 12:127–132

    CAS  Google Scholar 

  • Minkkinen K, Laine J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T (2007b) Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–126

    CAS  Google Scholar 

  • Moilanen M, Saarinen M, Silfverberg K (2010) Foliar nitrogen, phosphorus and potassium concentrations of Scots pine in drained mires in Finland. Silva Fenn 44:583–601

    Article  Google Scholar 

  • Montanarella L, Jones RJ, Hiederer R (2006) The distribution of peatland in Europe. Mires Peat 1:1–10

    Google Scholar 

  • Moore T, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Murphy M, Laiho R, Moore TR (2009) Effects of water table drawdown on root production and aboveground biomass in a boreal bog. Ecosystems 12:1268–1282. doi:10.1007/s10021-009-9283-z

    Article  CAS  Google Scholar 

  • Niinemets E, Pensa M, Charman DJ (2011) Analysis of fossil testate amoebae in Selisoo bog, Estonia: local variability and implications for paleoecological reconstructions in peatlands. Boreas 40:367–378. doi:10.1111/j.1502-3885.2010.00188.x

    Article  Google Scholar 

  • Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Glob Biogeochem Cycles 12:53–69

    Article  Google Scholar 

  • Nykänen H, Vasander H, Huttunen JT, Martikainen PJ (2002) Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant Soil 242:147–155

    Article  Google Scholar 

  • Ojanen P, Minkkinen K, Alm J, Penttilä T (2010) Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For Ecol Manag 260:411–421. doi:10.1016/j.foreco.2010.04.036

    Article  Google Scholar 

  • Ojanen P, Minkkinen K, Lohila A, Badorek T, Penttilä T (2012) Chamber measured soil respiration: a useful tool for estimating the carbon balance of peatland forest soils? For Ecol Manag 277:132–140. doi:10.1016/j.foreco.2012.04.027

    Article  Google Scholar 

  • Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatlands. For Ecol Manag 289:201–208. doi:10.1016/j.foreco.2012.10.008

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: community ecology package. R package version 2.0-4. http://cran.r-project.org/web/packages/vegan/index.html

  • Orru M (1992) Estonian peat resources. Geological survey of Estonia, Tallinn (in Estonian)

    Google Scholar 

  • Paal J, Vellak K, Liira J, Karofeld E (2010) Bog recovery in northeastern Estonia after the reduction of atmospheric pollutant input. Restor Ecol 18:387–400. doi:10.1111/j.1526-100X.2009.00608.x

    Article  Google Scholar 

  • Pensa M, Liblik V, Jalkanen R (2004) Temporal changes in the state of a pine stand in a bog affected by air pollution in northeast Estonia. Water Air Soil Pollut 159:87–99. doi:10.1023/B:WATE.0000049191.36830.a7

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effect models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pinheiro JC, Bates DM, DebRoy S, Sarkar D, the R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1-102. http://cran.r-project.org/web/packages/nlme/index.html

  • Pitkänen A, Simola H, Turunen J (2012) Dynamics of organic matter accumulation and decomposition in the surface soil of forestry-drained peatland sites in Finland. For Ecol Manag 284:100–106. doi:10.1016/j.foreco.2012.07.040

    Article  Google Scholar 

  • Salm JO, Kimmel K, Uri V, Mander U (2009) Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29:1081–1092. doi:10.1672/08-206.1

    Google Scholar 

  • Salm JO, Maddison M, Tammik S, Soosaar K, Truu J, Mander U (2012) Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692:41–55. doi:10.1007/s10750-011-0934-7

    Article  CAS  Google Scholar 

  • Sarkkola S, Hökkä H, Ahti E, Koivusalo H, Nieminen M (2012) Depth of water table prior to ditch network maintenance is a key factor for tree growth response. Scand J For Res 27:649–658. doi:10.1080/02827581.2012.689004

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York, pp 213–214

    Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996a) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykänen H, Martikainen PJ (1996b) The contribution of plant roots to CO2 fluxes from organic soils. Biol Fertil Soils 23:126–131. doi:10.1007/s003740050149

    Article  CAS  Google Scholar 

  • Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335:501–520. doi:10.1007/s11104-010-0447-6

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. Holocene 12:69–80. doi:10.1191/0959683602hl522rp

    Article  Google Scholar 

  • Urbanová Z, Picek T, Hájek T, Bufková I, Tuittila ES (2012) Vegetation and carbon gas dynamics under a changed hydrological regime in central European peatlands. Plant Ecol Divers 5:89–103. doi:10.1080/17550874.2012.688069

    Article  Google Scholar 

  • Vasander H, Tuittila ES, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen M-, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetlands Ecol Manag 11:51–63. doi:10.1023/A:1022061622602

    Article  CAS  Google Scholar 

  • Westman CJ, Laiho R (2003) Nutrient dynamics of drained peatland forests. Biogeochemistry 63:269–298

    Article  CAS  Google Scholar 

  • Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) PH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol Biochem 54:36–47. doi:10.1016/j.soilbio.2012.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian Ministry of Education and Research (target financed projects SF0280009s07, SF0180025s12 and SF0170011s08), Estonian Science Foundation (Grant JD109), and the European Commission through the European Regional Development Fund (the Center of Excellence in Environmental Adaptation). We thank Arne Sellin for revising the manuscript, John Davison for useful comments and language correction and two anonymous reviewers for their constructive criticism that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Karu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karu, H., Pensa, M., Rõõm, EI. et al. Carbon fluxes in forested bog margins along a human impact gradient: could vegetation structure be used as an indicator of peat carbon emissions?. Wetlands Ecol Manage 22, 399–417 (2014). https://doi.org/10.1007/s11273-014-9339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9339-5

Keywords

Navigation