Skip to main content
Log in

Silver Nanoparticles Bioaccumulation by Aquatic Macrophyte Salvinia auriculata

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study evaluated the bioaccumulation capacity of silver nanoparticles (AgNPs) by aquatic macrophyte Salvinia auriculata. These plants were cultivated for 64 days in a nutrient medium containing different silver nanoparticles (1.0, 5.0, and 10.0 mg L−1). Total concentrations of silver were monitored in the culture medium during the experiments to evaluate removal. Determination of total silver in plant root and leaf samples was performed to evaluate the effect of different concentrations on bioaccumulation. Macro and micronutrient levels in leaves and roots and photosynthetic pigments in the leaves were quantified before and after 64 days of cultivation. In the culture medium, the behavior of S. auriculata in presence of AgNPs was monitored by the following parameters: tolerance index, biomass production, silver removal, uptake index, bioconcentration factor, and translocation factor. S. auriculata could survive in high concentrations of AgNP (5.0 and 10.0 mg L−1) and was able to absorb silver. At the AgNPs concentration of 1.0 mg L−1 occurred higher silver removal (88%) by the plant, besides a higher biomass growth. Decreased silver uptake and S. auriculata biomass growth in the 5.0 and 10.0 mg L−1 samples may be associated not only with the presence of this metal but also its interference with nutrient uptake, especially the phosphorus. This study shows that aquatic macrophyte can bioaccumulate silver nanoparticles. These nanoparticles are present in several commercial products, such as footwear socks, in the manufacture of healing bandages, inside refrigerators, and food storage containers to retard spoilage, among other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott Chalew, T. E., Ajmani, G. S., Huang, H., & Schwab, K. J. (2013). Evaluating nanoparticle breakthrough during drinking water treatment. Environmental Health Perspectives, 121, 1161–1166.

    CAS  Google Scholar 

  • Agunbiade, F. O., Olu-Owolabi, B. I., & Adebowale, K. O. (2009). Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresource Technology, 100, 4521–4526.

    CAS  Google Scholar 

  • Ahamed, M., Posgai, R., Gorey, T. J., Nielsen, M., Hussain, S. M., & Rowe, J. J. (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology, 242, 263–269.

    CAS  Google Scholar 

  • Al-Hamdani, S. H., & Sirna, C. B. (2008). Physiological responses of Salvinia minima to different phosphorus and nitrogen concentrations. American Fern Journal, 98, 71–82.

    Google Scholar 

  • Batista, B., Pascoal, C., & Cássio, F. (2017). How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams? Ecotoxicology and Environmental Safety, 140, 148–155.

    CAS  Google Scholar 

  • Batley, G. E., & McLaughlin, M. J. (2010). Fate of manufactured nanomaterials in the Australian environment, CSIRO Niche Manufacturing Flagship Report. Australia: Department of the Environment, Water, Heritage and the Arts.

    Google Scholar 

  • Bauddh, K., Singh, K., Singh, B., & Singh, R. P. (2015). Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecological Engineering, 84, 640–652.

    Google Scholar 

  • Bizzo, A. L. T., Intorne, A. C., Gomes, P. H., Suzuki, M. S., & Esteves, B. S. (2014). Short-term physiological responses to copper stress in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 26, 268–277.

    CAS  Google Scholar 

  • Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: a review. Environmental Progress & Sustainable Energy, 33, 9–27.

    CAS  Google Scholar 

  • Chinnapongse, S. L., MacCuspie, R. I., & Hackley, V. A. (2011). Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Science of the Total Environment, 409, 2443–2450.

    CAS  Google Scholar 

  • Clark, R. B. (1975). Characterization of phosphates in intact maize roots. Journal of Agricultural and Food Chemistry, 23, 458–460.

    CAS  Google Scholar 

  • Cumberland, S. A., & Lead, J. R. (2009). Particle size distributions of silver nanoparticles at environmentally relevant conditions. Journal of Chromatography A, 1216, 9099–9105.

    CAS  Google Scholar 

  • Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R., & Frimmel, F. H. (2011). Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. Journal of Chromatography A, 1218, 4206–4212.

    CAS  Google Scholar 

  • Dhir, B., Sharmila, P., & Sarahi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39, 754–781.

    CAS  Google Scholar 

  • Dhir, B., & Srivastava, S. (2011). Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecological Engineering, 37, 893–896.

    Google Scholar 

  • Dubey, A., & Mailapalli, D. R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (pp. 307–330). Cham: Springer International Publishing.

    Google Scholar 

  • Espinoza-Quiñones, F. R., Módenes, A. N., Oliveira, A. P., & Trigueiros, D. E. G. (2013). Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes. Journal of Environmental Management, 130, 199–206.

    Google Scholar 

  • Espinoza-Quiñones, F. R., Módenes, A. N., Thomé, L. P., Palácio, S. M., Trigueiros, D. E. G., Oliveira, A. P., & Szymanski, N. (2009). Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chemical Engeneering Journal, 150, 316–322.

    Google Scholar 

  • Espinoza-Quiñones, F. R., Silva, E. A., Rizzutto, M. A., Palácio, S. M., Módenes, A. N., Szymanski, N., Martin, N., & Kroumov, A. D. (2008). Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World Journal of Microbiology and Biotechnology, 24, 3063–3070.

    Google Scholar 

  • Fuentes, I. I., Espadas-Gil, F., Talavera-May, C., Fuentes, G., & Santamaría, J. M. (2014). Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plantphysiological processes. Aquatic Toxicology, 155, 142–150.

    CAS  Google Scholar 

  • Glaspell, G. P., Zuo, C., & Jagodzinski, P. W. (2005). Surface enhanced raman spectroscopy using silver nanoparticles: the effects of particle size and halide ions on aggregation. Journal of Cluster Science, 16, 39–51.

    CAS  Google Scholar 

  • Gupta, P., Roy, S., & Mahindrakar, A. B. (2012). Treatment of water using water hyacinth, water lettuce and vetiver grass - a review. Resource Environmental, 2, 202–215.

    Google Scholar 

  • Hanks, N. A., Caruso, J. A., & Zhang, P. (2015). Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. Journal of Environmental Management, 164, 41–45.

    CAS  Google Scholar 

  • Hou, L., Li, K., Ding, Y., Li, Y., Chen, J., Wu, X., & Li, X. (2012). Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere, 87, 248–252.

    CAS  Google Scholar 

  • Huynh, K. A., & Chen, K. L. (2011). Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environmental Science and Technology, 45, 5564–5571.

    CAS  Google Scholar 

  • Khan, M. A. M., Kumar, S., Ahamed, M., Alrokayan, S. A., Alsalhi, M. S., Alhoshan, M., & Aldwayyan, A. S. (2011). Structural and spectroscopic studies of thin film of silver nanoparticles. Applied Surface Science, 257, 10607–10612.

    CAS  Google Scholar 

  • Khellaf, N., & Zerdaouni, M. (2009). Phytoaccumulation of zinc by the aquatic, Lemna gibba L. Bioresource Technology, 100, 6137–6140.

    CAS  Google Scholar 

  • Kholoud, M. M., Abou, E.-N., Ala’a, E., Abdulrhman, A.-W., & Reda, A. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135–140.

    Google Scholar 

  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27, 1825–1851.

    CAS  Google Scholar 

  • Lee, T. Y., Liu, M. S., Huang, L. J., Lue, S. I., Lin, L. C., Kwan, A. L., & Yang, R. C. (2013). Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneally administration. Particle and Fibre Toxicology, 10, 1–13.

    Google Scholar 

  • Li, X., Lenhart, J. J., & Walker, H. W. (2010). Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir, 26, 16690–16698.

    CAS  Google Scholar 

  • Liu, W., Zhou, Q., Liu, J., Fu, J., Liu, S., & Jiang, G. (2011). Environmental and biological influences on the stability of silver nanoparticles. Chinese Science Bulletin, 56, 2009–2015.

    CAS  Google Scholar 

  • Miao, A. J., Luo, Z., Chen, C. S., Chin, W. C., Santschi, P. H., & Quigg, A. (2010). Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE, 5(12), e15196.

    CAS  Google Scholar 

  • Nichols, P. B., Couch, J. D., & Al-Hamdani, S. H. (2000). Selected physiological responses of Salvinia minima to different chromium concentrations. Aquatic Botany, 68, 313–319.

    CAS  Google Scholar 

  • Parnian, A., Chorom, M., Jaafarzadeh, N., & Dinarvand, M. (2016). Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrology and Hydrobiology, 16, 194–200.

    Google Scholar 

  • Pettersson, R. P., & Olsson, M. (1998). A nitric acid e hydrogen peroxide digestion method for trace element analysis of milligram amounts of plankton and periphyton by total-reflection X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 13, 609–613.

    CAS  Google Scholar 

  • Pham, C. J., Yi, J., & Gu, M. B. (2012). Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicology and Environmental Safety, 78, 239–245.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Prado, C., Ponce, S. C., Pagano, E., Prado, E. E., & Rosa, M. (2016). Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquatic Toxicology, 175, 213–221.

    CAS  Google Scholar 

  • Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., & Prado, F. E. (2010). Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolismo. Journal of Hazardous Materials, 177, 546–553.

    CAS  Google Scholar 

  • Prasad M. N. V. (2007). Aquatic plants for phytotechnology. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 257–274). Berlin, Heidelberg: Springer.

  • Reisinger, S., Schiavon, M., Terry, N., & Pilon-Smits, E. A. (2008). Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. International Journal of Phytoremediation, 10, 1–15.

    Google Scholar 

  • Ripley, B. S., Muller, E., Behenna, M., Whittington-Jones, G. M., & Hill, M. P. (2006). Biomass and photosynthetic productivity of water hyacinth (Eichhornia crassipes) as affected by nutrient supply and mirid (Eccritotarus catarinensis) biocontrol. Biological Control, 39, 392–400.

    CAS  Google Scholar 

  • Romer, I., White, T. A., Baalousha, M., Chipman, K., Viant, M. R., & Lead, J. R. (2011). Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A, 1218(27), 4226–4233.

    Google Scholar 

  • Saha, N., & Gupta, S. D. (2015). Synthesis, characterization and bioactivity of nanoparticles from medicinal plants. In M. Pathak & J. N. Govil (Eds.), Recent Progress in Medicinal Plants (pp. 471–501). USA: Studium Press.

    Google Scholar 

  • Saha, N., & Gupta, S. D. (2017). Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. Journal of Hazardous Materials, 330, 18–28.

    CAS  Google Scholar 

  • Saini, R. K., Srivastava, A. K., Gupta, P. K., & Das, K. (2012). pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chemical Physics Letters, 511, 326–330.

    Google Scholar 

  • Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.

    CAS  Google Scholar 

  • Sim Ng, Y., & Chan, D. J. C. (2017). Wastewater phytoremediation by Salvinia molesta. Journal of Water Process Engineering., 15, 107–115.

    Google Scholar 

  • Siripattanakul-Ratpukdi, S., Ploychankul, C., Limpiyakorn, T., Vangnai, A. S., Rongsayamanont, C., & Khan, E. (2014). Mitigation of nitrification inhibition by silver nanoparticles using cell entrapment technique. Journal of Nanoparticle Research, 16, 1–10.

    Google Scholar 

  • Soares, D. C., de Oliveira, E. F., Silva, G. D., Duarte, L. P., Pott, V. J., & Vieira Filho, S. A. (2008). Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA). Applied Radiation and Isotopes, 66, 561–564.

    CAS  Google Scholar 

  • Wang, Y., Wen, Y., Li, J. J., Qin, W. C., Su, L. M., & Zhao, Y. H. (2014). Investigation on the relationship between bioconcentration factor and distribution coefficient based on class-based compounds: the factors that affect bioconcentration. Environmental Toxicology and Pharmacology, 38, 388–396.

    CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    CAS  Google Scholar 

  • Zhang, W., Cai, Y., Tu, C., & Ma, L. Q. (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 300, 167–177.

    CAS  Google Scholar 

Download references

Funding

The paper received financial support from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Moreno Palácio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palácio, S.M., Nogueira, D.A., Espinoza-Quiñones, F.R. et al. Silver Nanoparticles Bioaccumulation by Aquatic Macrophyte Salvinia auriculata. Water Air Soil Pollut 231, 62 (2020). https://doi.org/10.1007/s11270-020-4435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4435-z

Keywords

Navigation