Skip to main content

Advertisement

Log in

Effective Oxygen Diffusion Coefficient of Till and Green Liquor Dregs (GLD) Mixes Used in Sealing Layer in Mine Waste Covers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cover systems can efficiently limit acid mine drainage generation from sulfidic mine wastes by controlling oxygen diffusion. Their performance relies on their high degree of saturation, as oxygen diffusion is substantially reduced in water or saturated medium. However, natural soils available in the mine vicinities do not necessarily have the hydrogeological properties required for the construction of sealing layers. A common strategy is to improve the characteristics of local soils using bentonite amendment, but this usually induces high costs and environmental footprint. An alternative is to reuse (or valorise) waste materials, such as mine wastes or industrial wastes like green liquor dregs (GLD). Blends of till and GLD can have advantageous properties regarding water retention capacity and hydraulic conductivity. In this study, the effective oxygen diffusion coefficient De of till-GLD blends was evaluated using 81 diffusion tests. Various quantities and different types of GLD were tested. The diffusion coefficient was found to vary greatly depending on the degree of saturation. Even though the GLD contained naturally a substantial amount of water, a high water content of the till was still required to reach a low De. Measurements were also compared with modified Millington-Shearer predictive model which could generally predict the diffusion coefficient within an acceptable range. Results also indicated that the till-GLD mixes should not be exposed to evaporation as significant performance loss may rapidly occur upon drying. Main experimental results are presented in this paper together with recommendations in terms of cover design using till-GLD mixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in the unsaturated media, with applications to soil covers. Water, Air and Soil Pollution, 156, 163–193.

    Article  CAS  Google Scholar 

  • ASTM D422–63 (2007). Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken, PA.

  • ASTM D854–98 (2014). Standard test method for specific gravity of soils. ASTM International, West Conshohocken, PA.

  • ASTM D5550–14 (2015). Standard test method for specific gravity of soils by gas pycnometer. ASTM International, West Conshohocken, PA.

  • ASTM D2216-19 (2019). Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken, PA.

  • Aubertin, M., & Mbonimpa, M. (2001). Diffusion of oxygen through a pulp and paper residue barrier: discussion. Canadian Geotechnical Journal, 38(3), 658–660.

    Article  CAS  Google Scholar 

  • Aubertin, M., Chapuis, R. P., Aachib, M., Bussière, B., Ricard, J. F., & Tremblay, L. (1995). Evaluation en laboratoire de barrieres seches construites a partir de residus miniers, MEND project 2.22.2a (p. 164). Ottawa: CANMET.

    Google Scholar 

  • Aubertin, M., Bussière, B., Monzon, M., Joanes, A.M., Gagnon, D. Barbera, J.M., Aachib, M., Bédard, C., Chapuis, R.P., & Bernier, L. (1999). Etude sur les barrières sèches construites à partir des résidus miniers. Phase II , Essais en place. Rapport de Recherche, Projet CDT P1899. NEDEM/MEND 2.22.2c.

  • Aubertin, M., Aachib, M., & Authier, K. (2000). Evaluation of diffusive gas flux through covers with a GCL. Geotextiles and Geomembranes, 18, 215–233.

    Article  Google Scholar 

  • Aubertin, M., Bussière, B., & Bernier, L. (2002). Environnement et Gestion des Rejets Miniers. Published by Presses Polytechnique Internationales.

  • Aubertin, M., Bussière, B., Pabst, T., James, M., & Mbonimpa, M. (2016). Review of reclamation techniques for acid generating mine wastes upon closure of disposal sites (pp. 14–18). Chicago: Proc. Geo-Chicago: Sustainability, Energy and the Geoenvironment.

    Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., Weisener, C. G., Paktunc, D., Gould, W. D., & Johnson, D. B. (2014). The geochemistry of acid mine drainage. In: treatise on geochemistry (second edition). Holland and Turekian (Eds), 11, 131–190.

    Google Scholar 

  • Boulanger-Martel, V., Bussière, B., Côté, J., & Mbonimpa, M. (2015). Influence of freeze-thaw cycles on the performance of covers with capillary barrier effects made of crushed rock-bentonite mixtures to control oxygen migration. Canadian Geotechnical Journal, 53, 753–764.

    Article  Google Scholar 

  • Bussière, B. (2007). Colloquium (2004), hydro-geotechnical properties of hard rock tailings from metal mines and emerging geo-environmental disposal approaches. Canadian Geotechnical Journal, 44(9), 1019–1052.

    Article  Google Scholar 

  • Bussière, B., Potvin, R., Dagenais, A.-M., Aubertin, M., Maqsoud, A., & Cyr, J. (2009). Restauration du site minier Lorraine, Latulipe, Québec: résultats de 10 ans de suivi. Déchets, Sciences et Techniques, 54, 49–64.

    Google Scholar 

  • Chapuis, R. P. (1990). Sand–bentonite liners: predicting permeability from laboratory tests. Canadian Geotechnical Journal, 27, 47–57.

    Article  Google Scholar 

  • Chtaini, A., Bellaloui, A., Ballivy, G., & Narasiah, S. (2001). Field investigation of controlling acid mine drainage using alkaline paper mill waste. Water, Air and Soil Pollution, 125, 357–374.

    Article  CAS  Google Scholar 

  • Collin, M. (1998). The Bersbo pilot project: numerical simulation of water and oxygen transport in the soil covers at the mine waste deposits. Swedish Environmental Protection Agency. Report, 4763.

  • Collin, M., & Rasmuson, A. (1988). A comparison of gas diffusivity models for unsaturated porous media. Soil Science Society America Journal., 52, 1559–1565.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon Press.

    Google Scholar 

  • Dagenais, A. M., Mbonimpa, M., Bussière, B., & Aubertin, M. (2012). A modified oxygen consumption test to evaluate gas flux through oxygen barrier cover systems. Geotechnical Testing Journal, 35(1), 150–158.

    Google Scholar 

  • Demers, I., Bussière, B., Mbonimpa, M., & Benzaazoua, M. (2009). Oxygen diffusion and consumption in low sulphide tailings covers. Canadian Geotechnical Journal, 46, 454–469.

    Article  CAS  Google Scholar 

  • Elberling, B., Nicholson, R. V., Reardon, E. J., & Tibble, P. (1994). Evaluation of sulphide oxidation rates: a laboratory study comparing oxygen fluxes and rates of oxidation product release. Canadian Geotechnical Journal, 13, 375–383.

    Article  Google Scholar 

  • Guittonny-Larchevêque, M., Bussière, B., & Pednault, C. (2016). Tree–substrate water relations and root development in tree plantations used for mine tailings reclamation. Journal of Environmental Quality, 45(3), 1036–1045.

    Article  Google Scholar 

  • Hamberg, R., & Maurice, C. (2013). Karaktärisering av grönlutslam för efterbehandling av gruvavfall (in Swedish). Report. Luleå Tekniska Universitet.

  • Höglund, L. O., Herbert, R. B., Lövgren, L., Öhlander, B., Neretnieks, I., Moreno, L., Malmström, M., Elander, P., Linvall, M., & Lindström, B. (2004). MiMi−performance assessment: main report. Stockholm: MiMi Report 2003:3. Print. Luleå.

    Google Scholar 

  • Jia, Y., Stenman, D., Mäkitalo, M., Maurice, C., & Öhlander, B. (2013). Use of amended tailings as mine waste cover. Waste and Biomass Valorization, 4(4), 708–718.

    Article  Google Scholar 

  • Jia, Y., Maurice, C., & Öhlander, B. (2014). Effect of the alkaline industrial residues fly ash, green liquor dregs, and lime mud on mine tailings oxidation when used as covering material. Environmental Earth Science, 72, 319–334.

    Article  CAS  Google Scholar 

  • Jia, Y., Stahre, N., Mäkitalo, M., Maurice, C., & Öhlander, B. (2017). Element mobility in sulfidic mine tailings reclaimed with paper mill by-products as sealing materials. Environmental Science and Pollution Research, 24, 20372–20389.

    Article  CAS  Google Scholar 

  • Lindsay, M. B. J., Moncur, M. C., Bain, J. G., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2015). Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57, 157–177.

    Article  CAS  Google Scholar 

  • Lottermoser, B. (2010). Mine wastes–characterization, treatment and environmental impacts (3rd ed.). Berlin Heidelberg: Springer – Verlag.

    Google Scholar 

  • Mäkitalo, M., Jia, Y., Maurice, C., & Öhlander, B. (2014). Characterization of green liquor dregs, potentially useful for prevention of the formation of acid rock drainage. Minerals, 4, 330–344.

    Article  Google Scholar 

  • Mäkitalo, M., Mácsik, J., Maurice, C., & Öhlander, B. (2015a). Improving properties of sealing layers made of till by adding green liquor dregs to reduce oxidation of sulfidic mine waste. Journal of Geotechnical and Geological Engineering, 33(4), 1047–1054.

    Article  Google Scholar 

  • Mäkitalo, M., Stenman, D., Ikumpayi, F., Maurice, C., & Öhlander, B. (2015b). An evaluation of using various admixtures of green liquor dregs, a residual product, as sealing layers on reactive mine tailings. Mine Water and the Environment, 35(3), 283–293.

    Article  Google Scholar 

  • Mäkitalo, M., Lu, J., Maurice, C., & Öhlander, B. (2016). Prediction of the longterm performance of green liquor dregs as a sealing layer to prevent the formation of acid mine drainage. Journal of Environmental Chemical Engineering, 4(2), 2121–2127.

    Article  Google Scholar 

  • Martins, F. M., Martins, J. M., Ferracin, L. C., & da Cunha, C. J. (2007). Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill. Journal of Hazardous Materials, 147, 610–617.

    Article  CAS  Google Scholar 

  • Mbonimpa, M., Aubertin, M., Aachib, M., & Bussière, B. (2003). Diffusion and consumption of oxygen in unsaturated cover materials. Canadian Geotechnical Journal, 40, 916–932.

    Article  CAS  Google Scholar 

  • Millington, R. J., & Quirk, J. P. (1961). Permeability of porous solids. Transaction of the Faraday Society, 57, 1200–1207.

    Article  CAS  Google Scholar 

  • Millington, R. J., & Shearer, R. C. (1971). Diffusion in aggregated porous media. Soil Science, 111(6), 372–378.

    Article  CAS  Google Scholar 

  • Nicholson, R., Gillham, R., Cherry, J., & Reardon, E. (1989). Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Canadian Geotechnical Journal, 26, 1–8.

    Article  CAS  Google Scholar 

  • Nigéus, S. (2018). Green liquor dregs-amended till to cover sulfidic mine waste. Lic. thesis: Luleå University of Technology.

    Google Scholar 

  • Nigéus, S., Mácsik, J., Maurice, C., Eriksson, N., Odén, P., Embile, R. Jr., Lindgren, L., Rönnblom Pärsson, E., & Westin, G. (2018). Paperchain-implementation of circular case 5 D5.1 October 2018 (M17). Deliverable no. 5.1. EU 2020 research and innovation program.

  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16.

    Article  CAS  Google Scholar 

  • Pabst, T., Bussière, B., Aubertin, A., & Molson, J. (2018). Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: a numerical hydro-geochemical assessment. Journal of Contaminant Hydrology, 214, 39–53.

    Article  CAS  Google Scholar 

  • Ragnvaldsson, D., Bergknut, M., Lewis, J., Drotz, S., Lundkvist, A., Abrahamson, K., & Fernerud, S. (2014). A novel method for reducing acid mine drainage using green liquor dregs. Environmental Chemistry Letters, 12(3), 443–447.

    Article  CAS  Google Scholar 

  • Saba, S., Barnichon, J. D., Cui, Y. J., Tang, A. M., & Delage, P. (2014). Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture. Journal of Rock Mechanics and Geotechnical Engineering, 6, 126–132.

    Article  Google Scholar 

  • Sirén, S., Maurice, C., and Alakangas, L. (2016) Green liquor dregs in mine waste remediation, from laboratory investigations to field application. In conference proceedings: mining meets waste, conflict and solution. IMWA 2016 in Leipzig, Germany, July 11-15, 2016. 706-713. TU Bergakademie Freiberg, institute of mining and special civil engineering.

  • Toussaint, R. (2016). Influences des caractéristiques physico-chimiques de résidus miniers sulfureux sur leur réactivité à l'oxygène. Polytechnique Montréal: Master Thesis.

    Google Scholar 

  • Vick, S. G. (2001). Stability aspects of long-term closure for sulphide tailings (p. 12). Gaellivare: Proc. Safe Tailings Dams Constructions.

    Google Scholar 

  • Villain, L. (2008). Pulping wastes and abandoned mine remediation–application of green liquor dregs and other pulping by-products to the solidification/stabilisation of copper mine tailings. Master thesis. Luleå University of Technology.

  • Virolainen, A. (2018). Evaluating the effective oxygen diffusion coefficient in blends of till and green liquor dregs (GLD) used as sealing layer in mine waste covers. Master thesis. Luleå University of Technology.

  • Yanful, E. (1993). Oxygen diffusion through soil covers on sulphidic mine tailings. Journal of Geotechnical Engineering, 119(8), 1207–1228.

    Article  Google Scholar 

Download references

Funding

The project was financed by Mistra’s program “Closing the loop” (project GLAD), and the European Union’s Horizon 2020 research and innovation program under grant agreement no. 730305 (project Paperchain). The internship at Polytechnique Montreal was financed by Prof. Pabst personal starting grant and GeoRes Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) project (H2020-MSCA-RISE-2017) of the EC under grant agreement no. 778120. The authors would also like to thank the industrial partners of the Research Institute on Mines and Environment (RIME) UQAT-Polytechnique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pabst.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virolainen, A., Maurice, C. & Pabst, T. Effective Oxygen Diffusion Coefficient of Till and Green Liquor Dregs (GLD) Mixes Used in Sealing Layer in Mine Waste Covers. Water Air Soil Pollut 231, 60 (2020). https://doi.org/10.1007/s11270-020-4431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4431-3

Keywords

Navigation