Skip to main content
Log in

Biosynthesis, Characterization, and Application of Iron Nanoparticles: in Dye Removal and as Antimicrobial Agent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Green protocols for synthesizing nanoparticles have demonstrated numerous benefits and advantages, which include environmental friendliness, good efficacy and possess less threat to human. The aim of this study was to biosynthesize, characterize and evaluate the effectiveness of biosynthesized iron nanoparticles. The bioflocculant was extracted using a solvent extraction method and purified by 100 mL distilled water and a mixture of chloroform and butanol (5:2 v/v). Iron nanoparticles (FeNPs) were successfully synthesized through the chemical reduction method. Where 0.5 g of bioflocculant was mixed with 3 mM iron sulphate (FeSO4) solution and left to stand at room temperature for 24 h. Characterization of the as-synthesized nanoparticles was achieved with a Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier-Transform Infrared spectroscopy (FT-IR). The various parameters that effect on flocculation activity were evaluated, with optimum flocculation activity at a dosage size of 0.4 mg/mL (88%). The FeNPs were found to be cation-dependent Mg2+ (82%) and flocculate both in acidic pH 3 and in alkaline pH 11 with (93%) flocculation activity. The synthesized FeNPs are thermostable as they maintain flocculation activity above 80% at 100 °C temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bo, X., Gao, B., Peng, N., Wang, Y., Yue, Q., & Zhao, Y. (2012). Effect of dosing sequence and solution pH on floc properties of the compound bioflocculant–aluminum sulfate dual-coagulant in kaolin–humic acid solution treatment. Bioresour Technol, 113, 89–96.

    Article  CAS  Google Scholar 

  • Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules., 17(12), 14260–14274.

    Article  CAS  Google Scholar 

  • Cosa, S., Mabinya, L. V., Olaniran, A. O., Okoh, O. O., Bernard, K., Deyzel, S., & Okoh, A. I. (2011). Bioflocculant production by Virgibacillus sp. rob isolated from the bottom sediment of Algoa Bay in the eastern cape, South Africa. Molecules, 16(3), 2431–2442.

    Article  CAS  Google Scholar 

  • Cosa, S., Ugbenyen, A. M., Mabinya, L. V., Rumbold, K., & Okoh, A. I. (2013). Characterization and flocculation efficiency of a bioflocculant produced by a marine Halobacillus. Environ Technol, 34(18), 2671–2679.

    Article  CAS  Google Scholar 

  • Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod, 139, 1425–1435. https://doi.org/10.1016/j.jclepro.2016.09.019.

    Article  CAS  Google Scholar 

  • Dlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. R. (2019). Optimization and application of Bioflocculant Passivated copper nanoparticles in the wastewater treatment. Int J Environ Res Public Health, 16(12), 2185.

    Article  CAS  Google Scholar 

  • Exley, C., Korchazhkina, O., Job, D., Strekopytov, S., Polwart, A., & Crome, P. (2006). Non-invasive therapy to reduce the body burden of aluminium in Alzheimer's disease. J Alzheimers Dis, 10(1), 17–24.

    Article  CAS  Google Scholar 

  • Gao, J., Bao, H.-Y., Xin, M.-X., Liu, Y.-X., Li, Q., & Zhang, Y. F. (2006). Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. J Zhejiang Univ Sci B, 7(3), 186–192.

    Article  CAS  Google Scholar 

  • He, J., Zhen, Q., Qiu, N., Liu, Z., Wang, B., Shao, Z., & Yu, Z. (2009). Medium optimization for the production of a novel bioflocculant from Halomonas sp. V3a′ using response surface methodology. Bioresour Technol, 100(23), 5922–5927.

    Article  CAS  Google Scholar 

  • Karthiga Devi, K., & Natarajan, K. A. (2015). Production and characterization of bioflocculants for mineral processing applications. Int J Miner Process, 137, 15–25. https://doi.org/10.1016/j.minpro.2015.02.007.

    Article  CAS  Google Scholar 

  • Lee, D.-J., & Chang, Y. R. (2018). Bioflocculants from isolated stains: A research update. J Taiwan Inst Chem Eng, 87, 211–215. https://doi.org/10.1016/j.jtice.2018.03.037.

    Article  CAS  Google Scholar 

  • Mahdy, S. A., Raheed, Q. J., & Kalaichelvan, P. (2012). Antimicrobial activity of zero-valent iron nanoparticles. Int J Mod Eng Res, 2(1), 578–581.

    Google Scholar 

  • Maliehe, S., Shandu, S. J., & Basson, K. A. (2015). The antibacterial and antidiarreal activities of the crude methanolic Syzygium cordatum [S. Ncik, 48 (UZ)] fruit pulp and seed extracts. J Med Plants Res, 9(33), 884–891.

    Article  Google Scholar 

  • Muthulakshmi, L., Rajini, N., Varada Rajalu, A., Siengchin, S., & Kathiresan, T. (2017). Synthesis and characterization of cellulose/silver nanocomposites from bioflocculant reducing agent. Int J Biol Macromol, 103, 1113–1120. https://doi.org/10.1016/j.ijbiomac.2017.05.068.

    Article  CAS  Google Scholar 

  • Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2015). Bacillus toyonensis strain AEMREG6, a bacterium isolated from south African marine environment sediment samples produces a glycoprotein Bioflocculant. Molecules., 20(3), 5239.

    Article  CAS  Google Scholar 

  • Olsen, K. N., Larsen, M. H., Gahan, C. G., Kallipolitis, B., Wolf, X. A., Rea, R., Hill, C., & Ingmer, H. (2005). The Dps-like protein Fri of listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology., 151(3), 925–933.

    Article  CAS  Google Scholar 

  • Sathiyanarayanan, G., Kiran, G. S., & Selvin, J. (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B: Biointerfaces, 102, 13–20.

    Article  CAS  Google Scholar 

  • Shinde, A. J., & More, H. N. (2009). Nanoparticles: As carriers for drug delivery system. Res J Pharm Dosage Forms Technol, 1(2), 80–86.

    Google Scholar 

  • Sun, J., Zhang, X., Miao, X., & Zhou, J. (2012). Preparation and characteristics of bioflocculants from excess biological sludge. Bioresour Technol, 126, 362–366. https://doi.org/10.1016/j.biortech.2012.08.042.

    Article  CAS  Google Scholar 

  • Ugbenyen, A., & Okoh, A. (2014). Characteristics of a bioflocculant produced by a consortium of Cobetia and Bacillus species and its application in the treatment of wastewaters. Water SA, 40(1), 140–144.

    Article  Google Scholar 

  • Vörösmarty, C., Lettenmaier, D., Leveque, C., Meybeck, M., Pahl-Wostl, C., Alcamo, J., Cosgrove, W., Grassl, H., Hoff, H., & Kabat, P. (2004). Humans transforming the global water system. EOS Trans Am Geophys Union, 85(48), 509–514.

    Article  Google Scholar 

  • Xia, X., Lan, S., Li, X., Xie, Y., Liang, Y., Yan, P., Chen, Z., & Xing, Y. (2018). Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere., 206, 701–708. https://doi.org/10.1016/j.chemosphere.2018.04.159.

    Article  CAS  Google Scholar 

  • Yang, Z.-H., Huang, J., Zeng, G.-M., Ruan, M., Zhou, C.-S., Li, L., & Rong, Z.-G. (2009). Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology. Bioresour Technol, 100(18), 4233–4239.

    Article  CAS  Google Scholar 

  • Zaki, S. A., Elkady, M. F., Farag, S., & Abd-El-Haleem, D. (2013). Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J Environ Biol, 34(1), 51.

    Google Scholar 

Download references

Funding

Nkosinathi Dlamini would like to acknowledge the Council for Scientific and Industrial Research (CSIR, South Africa) for the financial assistance in the form of the Ph.D. bursary. The authors would like to acknowledge the Electron Microscopy Unit at the University of KwaZulu-Natal, Westville campus, for providing support by letting us use the TEM and SEM-EDX facilities for the characterization of nanomaterials. Rajasekhar Pullabhotla would like to acknowledge the National Research Foundation (NRF, South Arica) for the financial support in the form of the Incentive Fund Grant (Grant No: 103691) and Research Developmental Grant for Rated Researchers (112145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dlamini G. Nkosinathi or Rajasekhar VSR Pullabhotla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkosinathi, D.G., Albertus, B.K., Jabulani, S.S.E. et al. Biosynthesis, Characterization, and Application of Iron Nanoparticles: in Dye Removal and as Antimicrobial Agent. Water Air Soil Pollut 231, 130 (2020). https://doi.org/10.1007/s11270-020-04498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04498-x

Keywords

Navigation