Skip to main content
Log in

Preparation of Immobilized Sulfate-Reducing Bacteria-Microalgae Beads for Effective Bioremediation of Copper-Containing Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A strain of Desulfovibrio sp. sulfate-reducing bacteria (SRB) was isolated from a sludge sample. Novel immobilized SRB beads with microalgae (Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, and Anabaena spiroides) as the carbon source were prepared and then used to treat wastewater containing 60 mg/L Cu(II) and 600 mg/L sulfate in batch experiments. The microalgae were first degraded by co-existing fermentative bacteria into fatty acids, which then served as a carbon source for SRB. The solution chemical oxygen demand was significantly lower with microalgae substrates than with ethanol as a substrate. Different immobilization methods were evaluated with an orthogonal design, which indicated that the compositional parameters for preparing immobilized beads with an optimal sulfate reduction rate were polyvinyl alcohol (2%), sodium alginate (1%), calcium chloride (6%), silica sand (1%), and a 50-mL volume of SRB suspension. SRB activity in the immobilized beads was distinctly enhanced compared with that of suspended SRB. At an initial pH of 5.5, 72.4–74.4% of sulfate and over 91.7% of Cu(II) were removed, indicating that immobilized SRB beads with plentiful low-cost microalgae as a nutrient source may be an efficient method for acid mine drainage treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbari, M., Hallajisani, A., Keshtkar, A. R., Shahbeig, H., & Ghorbanian, S. A. (2015). Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. Journal of Environmental Chemical Engineering, 3, 140–149.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WEF. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • BayramoÄŸlu, G., & Arica, A. M. (2009). Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresource Technology, 100, 186–193.

  • Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A., & Wheeler, D. L. (1999). GenBank. Nucleic Acids Research, 27, 12–17.

    Article  CAS  Google Scholar 

  • Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Haroon, H., & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—a review. Journal of Hazardous Materials, 263, 322–333.

    Article  CAS  Google Scholar 

  • Boshoff, G., Duncan, J., & Rose, P. D. (2004). The use of micro-algal biomass as a carbon source for biological sulphate reducing systems. Water Research, 38, 2659–2666.

    Article  CAS  Google Scholar 

  • Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., & Xiang, T. S. (2015). Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere, 127, 127–135.

    Article  CAS  Google Scholar 

  • Cao, J. Y., Zhang, G. J., Mao, Z. S., Li, Y. Y., Fang, Z. H., & Yang, C. (2012). Influence of electron donors on the growth and activity of sulfate-reducing bacteria. International Journal of Mineral Processing, 106-109, 58–64.

    Article  CAS  Google Scholar 

  • Choi, E., & Rim, J. M. (1991). Competition and inhibition of sulfate reducers and methaneproducers in anaerobic treatment. Water Science and Technology, 23, 1259–1264.

    CAS  Google Scholar 

  • Costa, M. C., Santos, E. S., Barros, R. J., Pires, C., & Martins, M. (2009). Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere, 75, 831–836.

    Article  CAS  Google Scholar 

  • Costa, J. M., Rodriguez, R. P., & Sancinetti, G. P. (2017). Removal sulfate and metals Fe+2, Cu+2, and Zn+2 from acid mine drainage in an anaerobic sequential batch reactor. Journal of Environmental Chemical Engineering, 5, 1985–1989.

    Article  CAS  Google Scholar 

  • Das, B. K., Roy, S., Dev, S., Das, D., & Bhattacharya, J. (2015). Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement. Journal of Hazardous Materials, 300, 796–807.

    Article  CAS  Google Scholar 

  • Flores-Chaparro, C. E., Ruiz, L. F. C., Torre, M. C. A. D. L., Huerta-Diaz, M. A., & Rangel-Mendez, J. R. (2017). Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: algae biochemical composition and kinetics. Journal of Environmental Management, 193, 126–135.

    Article  CAS  Google Scholar 

  • Fuge, R., Pearce, F. M., Pearce, N. G., & Perkins, W. T. (1993). Geochemistry of Cd in the secondary environment near abandoned metalliferous mines, Wales. Applied Geochemistry, 8, 29–35.

    Article  Google Scholar 

  • Gonçalves, M. M., da Costa, A. C., Leite, S. G., & Sant'Anna Jr., G. L. (2007). Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere, 69, 1815–1820.

    Article  Google Scholar 

  • Hao, T., Xiang, P., Mackey, H. R., Chi, K., Lu, H., Chui, H., van Loosdrecht, M. C. M., & Chen, G. H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1–21.

    Article  CAS  Google Scholar 

  • Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Duarte, A. C., Vale, C., Pardal, M. A., & Pereira, E. (2017). A macroalgae-based biotechnology for water remediation: simultaneous removal of Cd, Pb and Hg by living Ulva lactuca. Journal of Environmental Management, 191, 275–289.

    Article  CAS  Google Scholar 

  • Hlabel, P., Maree, J., & Bruinsma, D. (2007). Barium carbonate process for sulphate and metal removal from mine water. Mine Water and the Environment, 26, 14–22.

    Article  Google Scholar 

  • Hsu, H. F., Jhuo, Y. S., Kumar, M., Ma, Y. S., & Lin, J. G. (2010). Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresource Technology, 101, 4354–4361.

    Article  CAS  Google Scholar 

  • Hungate, R. E., & Macy, J. (1973). The roll-tube method for cultivation of strict anaerobes. Bulletins from the Ecological Research Committee, 3, 123–126.

    Google Scholar 

  • Kieu, H. T. Q., Müller, E., & Horn, H. (2011). Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Research, 45, 3863–3870.

    Article  CAS  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). New York: Wiley.

    Google Scholar 

  • Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol Hulshoff, L. W., & Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environmental Science and Technology, 28, 41–88.

    Article  CAS  Google Scholar 

  • Li, Y. C., Hu, X. X., & Ren, B. Z. (2016). Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria. Water Science and Technology, 73, 2039–2051.

    Article  CAS  Google Scholar 

  • Li, X., Dai, L. H., Zhang, C., Zeng, G. M., Liu, Y. G., Zhou, C., Xu, W. H., Wu, Y., Tang, X. Q., Liu, W., & Lan, S. M. (2017). Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. Journal of Hazardous Materials, 324, 340–347.

    Article  CAS  Google Scholar 

  • Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulphate reduction. Biotechnology Advances, 25, 452–463.

    Article  CAS  Google Scholar 

  • Liu, G. M., Ren, N. Q., Wang, A. J., Wang, X., Du, D. Z., & Chen, M. (2004). The fermentation type of acidogenic bacteria and their cooperation with SRB in an acidogenic sulfate-reducing reactor. Acta Scientiae Circumstantiae, 24, 782–788.

    CAS  Google Scholar 

  • Ma, S. C., Zhang, H. B., Ma, S. T., Wang, R., Wang, G. X., Shao, Y., & Li, C. X. (2015). Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicology and Environmental Safety, 113, 483–490.

    Article  CAS  Google Scholar 

  • Macías, F., Caraballo, M. A., Nieto, J. M., Rötting, T. S., & Ayora, C. (2012). Natural pretreatment and passive remediation of highly polluted acid mine drainage. Journal of Environmental Management, 104, 93–100.

    Article  Google Scholar 

  • Madzivire, G., Petrik, L. F., Gitari, W. M., Ojumu, T. V., & Balfour, G. (2010). Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Minerals Engineering, 23, 252–257.

    Article  CAS  Google Scholar 

  • Martins, M., Faleiro, M. L., Silva, G., Chaves, S., Tenreiro, R., & Costa, M. C. (2011). Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source. International Biodeterioration & Biodegradation, 65, 78–84.

    Article  CAS  Google Scholar 

  • McCauley, C. A., O’Sullivan, A. D., Milke, M. W., Weber, P. A., & Trumm, D. A. (2009). Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Research, 43, 961–970.

    Article  CAS  Google Scholar 

  • Mothe, G. K., Pakshirajan, K., & Das, G. (2017). Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization. Journal of Hazardous Materials, 324, 62–70.

    Article  Google Scholar 

  • Mwesigye, R. A., & Tumwebaze, B. S. (2017). Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in western Uganda; implications for domestic water quality. Chemosphere, 169, 281–287.

    Article  Google Scholar 

  • Pagnanelli, F., Cruz Viggi, C., Cibati, A., Uccelletti, D., & Palleschi, C. (2012). Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. Journal of Hazardous Materials, 199-200, 186–192.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1984). The sulfate-reducing bacteria (2nd ed.). Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Quan, L. M., Khanh, D. P., Hira, D., Fujii, T., & Furukawa, K. (2011). Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel. Biodegradation, 22, 1155–1167.

    Article  CAS  Google Scholar 

  • Russell, R. A., Holden, P. J., Wilde, K. L., & Neilan, B. A. (2003). Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. Hydrometallurgy, 71, 227–234.

    Article  CAS  Google Scholar 

  • Sahinkaya, E., & Yucesoy, Z. (2010). Biotreatment of acidic zinc-and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor. Bioprocess and Biosystems Engineering, 33, 989–997.

    Article  CAS  Google Scholar 

  • Sahinkaya, E., Gunes, F. M., Ucar, D., & Kaksonen, A. H. (2011). Sulfidogenic fluidized bed treatment of real acid mine drainage water. Bioresource Technology, 102, 683–689.

    Article  CAS  Google Scholar 

  • Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F., & Stams, A. J. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269, 98–109.

    Article  Google Scholar 

  • Seiler, H. G., Sigel, H., Sigel, A., & Townshend, A. (1988). Handbook on toxicity of inorganic compounds. New York: Marcel Dekker.

    Google Scholar 

  • Sheoran, A. S., Sheoran, V., & Choudhary, R. P. (2010). Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Minerals Engineering, 23, 1073–1100.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  • Tang, J. C., Gong, G. C., Su, H., Wu, F. H., & Herman, C. L. (2016). Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method. Applied Energy, 169, 696–708.

    Article  Google Scholar 

  • Wakeman, K. D., Erving, L., Riekkola-Vanhanen, M. L., & Puhakka, J. A. (2010). Silage supports sulfate reduction in the treatment of metals-and sulfate-containing waste waters. Water Research, 44, 4932–4939.

    Article  CAS  Google Scholar 

  • Wang, W., Kang, Y., & Wang, A. (2013). One-step fabrication in aqueous solution of a granular alginate based hydrogel for fast and efficient removal of heavy metal ions. Journal of Polymer Research, 20, 101–111.

    Article  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  Google Scholar 

  • Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34, 1225–1244.

    Article  CAS  Google Scholar 

  • Yan, H., & Pan, G. (2002). Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere, 49, 471–476.

    Article  CAS  Google Scholar 

  • Yang, W. C., Tang, Q. Z., Wei, J. M., Ran, Y. J., Chai, L. Y., & Wang, H. Y. (2016). Enhanced removal of Cd(II) and Pb(II) by composites of mesoporouscarbon stabilized alumina. Applied Surface Science, 369, 215–223.

    Article  CAS  Google Scholar 

  • Yuvaraja, G., Subbaiah, M. V., & Krishnaiah, A. (2012). Caesalpinia bonducella leaf powder as biosorbent for Cu(II) removal from aqueous environment: Kinetic and isotherms. Industrial & Engineering Chemistry Research, 51, 11218–11225.

    Article  CAS  Google Scholar 

  • Zhang, M. L., & Wang, H. X. (2014). Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Minerals Engineering, 69, 81–90.

    Article  CAS  Google Scholar 

  • Zhang, L., Cai, Z. J., Yang, J. M., Yuan, Z. W., & Chen, Y. (2015). The future of copper in China—a perspective based on analysis of copper flows and stocks. Science of the Total Environment, 536, 142–149.

    Article  CAS  Google Scholar 

  • Zhang, M. L., Wang, H. X., & Han, X. M. (2016). Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere, 154, 215–223.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Water Pollution Control and Treatment Science and Technology Major Project in China (2014ZX07510-001 and 2015ZX07103-007) and the National Natural Science Foundation of China (No. 41471399, 41101474 and 51504094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, X. & Geng, B. Preparation of Immobilized Sulfate-Reducing Bacteria-Microalgae Beads for Effective Bioremediation of Copper-Containing Wastewater. Water Air Soil Pollut 229, 54 (2018). https://doi.org/10.1007/s11270-018-3709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3709-1

Keywords

Navigation