Skip to main content
Log in

Properties of the DOM in Soil Irrigated with Wastewater Effluent and Its Interaction with Copper Ions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

DOM samples extracted from a wastewater effluent (EW) and from leachates collected from lysimeters in which Eucalyptus trees were deficit-irrigated with either EW (EL) or with water pumped from an aquifer recharged with the EW (TL) were studied. As ascertained by principal component analysis, DOM from both leachates displayed similar properties, different from those of the EW DOM. 1H-NMR and FTIR spectra of the > 1-kDa DOM size fraction of the EW revealed less aromaticity than this fraction of either leachate. 3-D fluorescence maps indicated that the density of nitro, carboxyl, or phenol groups attached to aromatic structures was lowest in the EW DOM and only that DOM displayed protein-like fluorescence peaks. The leachates’ DOM > 1 kDa fraction complexed more Cu2+ per unit C than this fraction of the EW (Kd = ~ 105 and ~ 104 L kg−1 DOC, respectively, at ~ 10−5 M free Cu2+). While Cu complexed preferentially with non-fluorescing sites in the EW DOM, in the leachates’ DOM, Cu bound primarily with fluorescing (aromatic) groups or with adjacent groups. The similar behavior displayed by DOM from leachates obtained under irrigation with either EW or reclaimed water suggests that processes occurring in the soil (e.g., by roots or microbiota) influenced the soil DOM’s properties to a larger extent than the nature of OM in the irrigation water. Thus, irrigation with good quality secondary effluent should not significantly enhance heavy metal mobility as compared to their mobility under irrigation with higher quality water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amrhein, C., Strong, J. E., & Mosher, P. A. (1992). Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environmental Science & Technology, 26, 703–709.

    Article  CAS  Google Scholar 

  • Baker, A., & Spencer, R. G. M. (2004). Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment, 333, 217–232.

    Article  CAS  Google Scholar 

  • Barber, L. B., Leenheer, J. A., Noyes, T. I., & Stiles, E. A. (2001). Nature and transformation of dissolved organic matter in treatment wetlands. Environmental Science & Technology, 35, 4805–4816.

    Article  CAS  Google Scholar 

  • Bar-Tal, A., Yermiyahu, U., Ben-Gal, A., Fine, P. & Hass, A. (2015). Practices that simultaneously optimize water and nutrients use efficiency: Israeli experiences in fertigation and irrigation with treated waste water. In: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., & Wichelns, D. (Eds.), Managing water and fertilizer for sustainable agricultural intensification ( pp. 209–241). IFA, IWMI, IPNI, & IPI. 1st edition, Paris.

  • Batchelli, S., Muller, F. L. L., Baalousha, M., & Lead, J. R. (2009). Size fractionation and optical properties of colloids in an organic-rich estuary (Thurso, UK). Marine Chemistry, 113, 227–237.

    Article  CAS  Google Scholar 

  • Cabaniss, S. E., & Shuman, M. S. (1986). Combined ion specific electrode and fluorescence quenching detection for copper-dissolved organic matter titrations. Analytical Chemistry, 58, 398–401.

    Article  CAS  Google Scholar 

  • Cabaniss, S. E., & Shuman, M. S. (1988). Fluorescence quenching measurements of copper-fulvic acid binding. Analytical Chemistry, 60, 2418–2421.

    Article  CAS  Google Scholar 

  • Caille, N., Tiffreau, C., Leyval, C., & Morel, J. L. (2003). Solubility of metals in an anoxic sediment during prolonged aeration. Science of the Total Environment, 301, 239–250.

    Article  CAS  Google Scholar 

  • Cao, J., Lan, K. C., Dawson, R. W., & Tao, S. (2004). The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong. Chemosphere, 54, 507–514.

    Article  CAS  Google Scholar 

  • Chefetz, B., Hadar, Y., & Chen, Y. (1998). Dissolved organic carbon fraction formed during composting of municipal solid waste: properties and significance. Acta Hydrochimica et Hydrobiologica, 26, 172–179.

    Article  CAS  Google Scholar 

  • Chen, J., LeBoeuf, E. J., Dai, S., & Gu, B. (2003). Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, 50, 639–647.

    Article  CAS  Google Scholar 

  • Chen, H. L., Zhou, J. M., & Xiao, B. H. (2010). Characterization of dissolved organic matter derived from rice straw at different stages of decay. Journal Soils and Sediments, 10, 915–922.

    Article  CAS  Google Scholar 

  • Chen, Y., Dosoretz, C. G., Katz, I., Jueschke, E., Marschner, B., & Tarchitzky, J. (2011). Organic matter in wastewater and treated wastewater-irrigated soils: properties and effects. In G. J. Levy, P. Fine, & A. Bar-Tal (Eds.), Treated wastewater in agriculture—use and impacts on the soil environment and crops (pp. 400–417). West Sussex: Wiley.

    Google Scholar 

  • Chin, Y. P., Aiken, G., & O’Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology, 28, 1853–1858.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51, 325–246.

    Article  CAS  Google Scholar 

  • Comas, J., Domínguez, C., Salas-Vázquez, D. I., Parera, J., Díez, S., & Bayona, J. M. (2014). Input and leaching potential of copper, zinc, and selenium in agricultural soil from swine slurry. Archives of Environmental Contamination and Toxicology, 66, 277–286.

    Article  CAS  Google Scholar 

  • Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D., & Chen, H. S. (1995). Principles of protein folding—a perspective from simple exact models. Protein Science, 4, 561–602.

    Article  CAS  Google Scholar 

  • Dudal, Y., Sévenier, G., Dupont, L., & Guillon, E. (2005). Fate of the metal-binding soluble organic matter throughout a soil profile. Soil Science, 170, 707–715.

    Article  CAS  Google Scholar 

  • Engebretson, R. R., & von Wandruszka, R. (1994). Microorganization in dissolved humic acids. Environmental Science & Technology, 28, 1934–1941.

    Article  CAS  Google Scholar 

  • Ewald, M., Berger, P., & Visser, S. A. (1988). UV-visible absorption and fluorescence properties of fulvic acids of microbial origin as functions of their molecular weights. Geoderma, 43, 11–20.

    Article  CAS  Google Scholar 

  • Fine, P., & Hass, A. (2007). Role of organic matter in microbial transport during irrigation with sewage effluent. Journal of Environmental Quality, 36, 1050–1060.

    Article  CAS  Google Scholar 

  • Fine, P., Hass, A., Prost, R., & Atzmon, N. (2002). Organic carbon leaching from effluent irrigation lysimeters as affected by residence time. Soil Science Society America Journal, 66, 1531–1539.

    Article  CAS  Google Scholar 

  • Fine, P., Rathod, P., Beriozkin, A., & Hass, A. (2014). Chelant-enhanced heavy metal uptake by Eucalyptus trees under controlled deficit irrigation. Science of the Total Environment, 493, 995–1005.

    Article  CAS  Google Scholar 

  • Gauthier, T. D., Shane, E. C., Guerin, W. F., Seltz, W. R., & Grant, C. L. (1986). Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology, 20, 1162–1166.

    Article  CAS  Google Scholar 

  • Gélinas, Y., Baldock, J. A., & Hedges, J. I. (2001). Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis. Organic Geochemistry, 32, 677–693.

    Article  Google Scholar 

  • Ghosh, K., & Schnitzer, M. (1980). Macromolecular structures of humic substances. Soil Science, 129, 266–276.

    Article  CAS  Google Scholar 

  • Gigliotti, G., Giusquiani, P. L., Businelli, D., & Macchioni, A. (1997). Composition of dissolved organic matter in a soil amended with municipal waste compost. Soil Science, 162, 919–926.

    Article  CAS  Google Scholar 

  • Gigliotti, G., Kaiser, K., Guggenberger, G., & Haumaier, L. (2002). Differences in the chemical composition of dissolved organic matter from waste material of different sources. Biology and Fertility Soils, 36, 321–329.

    Article  CAS  Google Scholar 

  • Graber, E.R., Gerstl, Z., Fischer, E., & Mingelgrin, U. (1995). Enhanced transport of atrazine under irrigation with effluent. Soil Sci. Soc. Am. J. 59:1513–1519.

  • Guo, M., & Chorover, J. (2003). Transport and fractionation of dissolved organic matter in soil columns. Soil Science, 168, 108–118.

    Article  CAS  Google Scholar 

  • Guo, X. J., Yuan, D. H., Li, Q., Jiang, J. Y., Chen, F. X., & Zhang, H. (2012). Spectroscopic techniques for quantitative characterization of Cu (II) and Hg (II) complexation by dissolved organic matter from lake sediment in arid and semi-arid region. Ecotoxicology and Environmental Safety, 85, 144–150.

    Article  CAS  Google Scholar 

  • Hall, K. J., & Lee, F. G. (1974). Molecular size and spectral characterization of organic matter in a meromictic lake. Water Research, 8, 239–251.

    Article  CAS  Google Scholar 

  • Hass, A., Mingelgrin, U., & Fine, P. (2011). Heavy metals in soils irrigated with wastewater. In G. J. Levy, P. Fine, & A. Bar-Tal (Eds.), Treated wastewater in agriculture: use and impacts on the soil environment and crops (pp. 247–285). West Sussex: Wiley.

    Google Scholar 

  • Hoffmann, C., Marschner, B., & Renger, M. (1998). Influence of DOM-quality, DOM-quantity and water regime on the transport of selected heavy metals. Physics and Chemistry of the Earth, 23, 205–209.

    Article  Google Scholar 

  • Hsu, J. H., & Lo, S. L. (1999). Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environment Pollution, 104, 189–196.

    Article  CAS  Google Scholar 

  • Ilani, T., Schulz, E., & Chefetz, B. (2005). Interactions of organic compounds with wastewater dissolved organic matter: role of hydrophobic fractions. Journal of Environmental Quality, 35, 552–562.

    Article  Google Scholar 

  • Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Chio, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36, 859–870.

    Article  CAS  Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and it dependence on dissolved organic matter. Science Total Environment, 209, 27–39.

    Article  CAS  Google Scholar 

  • Kalbitz, K., Schmerwitz, J., Schwesig, D., & Matzner, E. (2003a). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113, 273–291.

    Article  CAS  Google Scholar 

  • Kalbitz, K., Schwesig, D., Schmerwitz, J., Kaiser, K., Haumaier, L., Glaser, B., Ellerbrock, R., & Leinweber, P. (2003b). Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biology and Biochemistry, 35, 1129–1142.

    Article  CAS  Google Scholar 

  • Komada, T., Schofield, O. M. E., & Reimers, C. E. (2002). Fluorescence characteristics of organic matter released from coastal sediments during resuspension. Marine Chemistry, 79, 81–97.

    Article  CAS  Google Scholar 

  • Leenheer, J. A., & Croué, J.-P. (2003). Characterizing dissolved aquatic organic matter. Environmental Science & Technology, 37, 19A–26A.

    Article  Google Scholar 

  • Linnik, P. M. (2003). Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies. Analytical and Bioanalytical Chemistry, 376, 405–412.

    Article  CAS  Google Scholar 

  • Lu, Y., & Allen, H. E. (2002). Characterization of copper complexation with natural dissolved organic matter (DOM)—link to acidic moieties of DOM and competition by Ca and Mg. Water Research, 36, 5083–5101.

    Article  CAS  Google Scholar 

  • Ma, H., Allen, H., & Yin, Y. (2001). Characterization of isolate fractions of dissolved organic matter from natural waters and wastewater effluent. Water Research, 35, 985–996.

    Article  CAS  Google Scholar 

  • Mounier, S., Zhao, H., Garnier, C., & Redon, R. (2011). Copper complexing properties of dissolved organic matter: PARAFAC treatment of fluorescence quenching. Biogeochem, 106, 107–116.

    Article  Google Scholar 

  • Peuravuori, J., & Pihlaja, K. (1998). Multimethod characterization of lake aquatic humic matter isolated with sorbing solid and tangential membrane filtration. Analytica Chimica Acta, 364, 203–221.

    Article  CAS  Google Scholar 

  • Piccolo, A., Nardi, S., & Concheri, G. (1996). Macromolecular changes of humic substances induced by interaction with organic acids. European Journal of Soil Science, 47, 319–328.

    Article  CAS  Google Scholar 

  • Plaza, C., Bronetti, G., Senesi, N., & Polo, A. (2006). Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge amended soils by fluorescence spectroscopy. Environmental Science & Technology, 40, 917–923.

    Article  CAS  Google Scholar 

  • Pullicino, D.S. (2002). Chemical and spectroscopic analysis of organic matter transformations during composting of municipal solid waste: a review. Malta: MSc. Thesis of Department of Chemistry, University of Malta.

  • Qin, F., Shan, X.-Q., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57, 253–263.

    Article  CAS  Google Scholar 

  • Rappole, C. A., Kasturi, M., & Han, W. (2012). Dynamic fluorescence imaging of the free radical products of X-ray absorption in live cells. Optical Nanoscopy., 1, 5–14.

    Article  Google Scholar 

  • Raulund-Rasmussen, K., Borrggaard, O. K., Hansen, H. C. B., & Olsson, M. (1998). Effect of natural soil solutes on weathering rates of soil minerals. European Journal of Soil Science, 49, 397–406.

    Article  CAS  Google Scholar 

  • Rebhun, M., & Manka, J. (1971). Classification of organics in secondary effluents. Environmental Science & Technology, 5, 606–609.

    Article  CAS  Google Scholar 

  • Reynolds, D. M. (2002). The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. Journal of Chemical Technology and Biotechnology, 77, 965–972.

    Article  CAS  Google Scholar 

  • Reynolds, D. M., & Ahmad, S. R. (1995). The effect of metal ions on the fluorescence of sewage wastewater. Water Research, 29, 2214–2216.

    Article  CAS  Google Scholar 

  • Saadi, I., Borisover, M., Armon, R., & Laor, Y. (2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere, 63, 530–539.

    Article  CAS  Google Scholar 

  • Sakellariadou, F. (2012). Heavy metal and dissolved organic matter studies in Piraeus port sediments. International Journal Oceans and Oceanography, 6, 27–43.

    Google Scholar 

  • SAS Institute Inc. 2012. JMP® 10 Discovering JMP. Cary, NC. SAS Institute Inc.

  • Sauve, S., McBride, M. B., & Hendershot, W. H. (1995). Ion-selective electrode measurements of copper(II) activity in contaminated soils. Archives of Environmental Contamination and Toxicology, 29, 373–379.

    Article  CAS  Google Scholar 

  • Schmitt, P., Kettrup, A., Freitag, D., & Garrison, A. W. (1996). Flocculation of humic substances with metal ions as followed by capillary zone electrophoresis. Fresenius' Journal of Analytical Chemistry, 354, 915–920.

    CAS  Google Scholar 

  • Schnitzer, M., & Khan, S. U. (1978). Humic substances: chemistry and reactions. In M. Schnitzer & S. U. Khan (Eds.), Soil organic matter (pp. 1–64). New York: Elsevier Science.

    Google Scholar 

  • Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spectrometric identification of organic compounds 5th Ed. USA: Wiley.

    Google Scholar 

  • Smith, D. S., Bell, R. A., & Kramer, J. R. (2002). Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comparative Biochemistry Physiology Part C, 133, 65–74.

    Google Scholar 

  • Solomon, T. W. G., & Fryhle, G. B. (2004). Organic chemistry (8th ed.). USA: Wiley.

    Google Scholar 

  • Stevenson, F. J., & Chen, Y. (1991). Stability constants of copper(II)-humate complexes determined by modified potentiometric titration. Soil Science Society of America Journal, 55, 1586–1591.

    Article  CAS  Google Scholar 

  • Temminghoff, E. J. M, van der Zee, S. E. A. T. M., deHaan, FAM, (1997). Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environmental Science & Technology , 31(4):1109-1115.

  • Traina, S. J., Novak, J., & Smeck, N. E. (1990). An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. Journal of Environmental Quality, 19, 151–153.

    Article  CAS  Google Scholar 

  • Vulkan, R., Mingelgrin, U., Ben-Asher, J., & Frenkel, H. (2002). Copper and zinc speciation in the solution of a soil-sludge mixture. Journal of Environmental Quality, 31, 193–203.

    Article  CAS  Google Scholar 

  • Yamashita, Y., & Tanoue, E. (2003). Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry, 82, 255–271.

    Article  CAS  Google Scholar 

  • Zsolnay, A. (2003). Dissolved organic matter: artefacts, definitions, and functions. Geoderma, 113, 187–209.

    Article  CAS  Google Scholar 

  • Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., & Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50.

    Article  CAS  Google Scholar 

  • Zumstein, J., & Buffle, J. (1989). Circulation of pedogenic and aquagenic organic matter in a eutrophic lake. Water Research, 23, 229–239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Chief Scientist of the Ministry of Agriculture and Rural Development, Israel, for the financial support and Mekorot–Israel Water Company and the Dan Region Cities Sewage Association for providing the site and water. Special thanks are due to Dr. Hillary Voet for performing the PCA and her invaluable support in all statistical aspects of the work; to Shoshi Suriano, Rivka Rosenberg, and Yosi Moshe for their invaluable technical help; and to Tibor Markowitz for his dedicated maintenance of the experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fine.

Electronic Supplementary Material

Online Resource 1

1H-NMR spectra of the investigated DOM samples. EW- secondary effluent; TL- reclaimed water leachate; EL- effluent leachate. a: size fraction >1 kDa; b. size fraction 1 kDa > DOM < 200 Da. (PPTX 218 kb)

Online Resource 2

FTIR spectra of the investigated DOM samples. EW - effluent; TL - reclaimed water leachate; EL - effluent leachate. a: size fraction >1 kDa; b. size fraction 1 kDa > DOM < 200 Da. (PPTX 161 kb)

Online Resource 3

Comparison of fluorescence maps before and after adding Cu (pCu = 3.5). EW- secondary effluent; TL- reclaimed water leachate; EL- effluent leachate. a: size fraction >1 kDa; b. size fraction 1 kDa > DOM < 200 Da. (PPTX 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fine, P., Carmeli, S., Borisover, M. et al. Properties of the DOM in Soil Irrigated with Wastewater Effluent and Its Interaction with Copper Ions. Water Air Soil Pollut 229, 2 (2018). https://doi.org/10.1007/s11270-017-3627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3627-7

Keywords

Navigation