Skip to main content
Log in

Adsorption of Organic Compounds onto Multiwall and Nitrogen-Doped Carbon Nanotubes: Insights into the Adsorption Mechanisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the single species and competitive (multispecies) adsorption of pyridine, phenol, and p-nitrophenol present in aqueous solution on multiwalled carbon nanotubes (MWCNTs), and nitrogen-doped carbon nanotubes (CNx) were studied. The physicochemical properties of MWCNTs and CNx were related to their capability for the adsorption of the organic molecules. Adsorption isotherms were developed at 25 °C, at pH 7 and 10. All compounds were favorably adsorbed on both materials, with differences in the adsorption capacities. The CNx phenol adsorption capacity outperformed that of MWCNTs; however, CNx demonstrated a lower adsorption capacity for pyridine and p-nitrophenol than MWCNTs. The adsorption capacities for each material could be associated with the particular adsorption mechanisms that control the adsorption of the organic molecules. Based on the results, it is proposed that three mechanisms might be responsible for the adsorption of the organic molecules: hydrogen bonding, π-π interactions, and electron-donor reactions. The prevalence of any of the specific mechanism depends on the geometry of the carbon nanotubes, the size and shape of the organic target molecules to adsorb, and the presence of other organic molecules in solution. The aqueous chemistry of the adsorbates at the solution pH during adsorption, played a relevant role during adsorption as well. The differences in nanotube selectivity were attributed to the presence of oxygen and nitrogen in the adsorbent structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agency for toxic substances and disease registry (2008). ATSDR Public Health statement for Phenol. http://www.atsdr.cdc.gov/PHS/PHS.asp?id=146&tid=27. Accessed 10 October 2016.

  • Balasubramanian, K., & Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small, 1, 180–192.

    Article  CAS  Google Scholar 

  • Chen, W., Duan, L., & Zhu, D. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science and Technology, 41(24), 8295–8300.

    Article  CAS  Google Scholar 

  • Czerw, R., Terrones, M., Charlier, J.-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P. M., Blau, W., Rühle, M., & Carroll, D. L. (2001). Identification of electron donor states in N-doped carbon nanotubes. Nano Letters, 1(9), 457–460.

    Article  CAS  Google Scholar 

  • Dean, J. A. (1992). Lange’s handbook of chemistry. New York: Mc Graw Hill.

    Google Scholar 

  • Diaz-Flores, P. E., López-Urıas, F., Terrones, M., & Rangel-Mendez, J. R. (2009). Simultaneous adsorption of Cd 2+ and phenol on modified N-doped carbon nanotubes : experimental and DFT studies. Journal of Colloid and Interface Science, 334(2), 124–131.

    Article  CAS  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47–99.

    Article  Google Scholar 

  • Dresselhaus, M. S., & Eklund, P. C. (2016). Phonons in carbon nanotubes. Advances in Physics, 6, 705–814.

    Google Scholar 

  • Hasan, Z., Tong, M., Jung, B. K., Ahmed, I., Zhong, C., & Jhung, S. H. (2014). Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion. The Journal of Physical Chemistry C, 118(36), 21049–21056.

    Article  CAS  Google Scholar 

  • Lazo-Cannata, J. C., Nieto-Márquez, A., Jacoby, A., Paredes-Doig, A. L., Romero, A., Sun-Kou, M. R., & Valverde, J. L. (2011). Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength. Separation and Purification Technology, 80(2), 217–224.

    Article  CAS  Google Scholar 

  • Liao, L., Fang, P., & Pan, C. (2011). Nitrogen-doped carbon nanotubes from amine flames. Journal of Nanoscience and Nanotechnology, 11(2), 1060–1067.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes : role of aromaticity and substitution of hydroxyl groups adsorption of phenolic compounds by carbon nanotubes : role of aromaticity and substitution of hydroxyl groups. Environmental Science and Technology, 42(19), 7254–7259.

    Article  CAS  Google Scholar 

  • Lu, C., Chiu, H., & Liu, C. (2006). Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Industrial & Engineering Chemistry Research, 45(8), 2850–2855.

    Article  CAS  Google Scholar 

  • Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E., & Haddon, R. C. (2002). Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research, 35(12), 1105–1113.

    Article  CAS  Google Scholar 

  • Perez-Aguilar, V., Muñoz-Sandoval, E., Diaz-Flores, P., & Rangel-Mdendez, R. (2010). Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution : equilibrium and kinetics. Journal of Nanoparticle Research, 12(2), 467–480.

    Article  CAS  Google Scholar 

  • Radovic, L., Moreno-Castilla, C., & Utrilla, J. R. (2001). Carbon materials as adsorbents in aqueous solutions. In L. Radovic (Ed.), Chemistry and physics of carbons (Vol. 27, pp. 227–382). Basel: Marcel Dekker.

    Google Scholar 

  • Scheinost, A. C., Chavernas, A., Barrón, V., & Torrent, J. (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46(5), 528–536.

    Article  CAS  Google Scholar 

  • Terrones, M., Ajayan, P. M., Banhart, F., Blase, X., Carroll, D. L., Charlier, J. C., Czerw, R., Foley, B., Grobert, K.-R. N. P., Rühle, M., Seeger, T., & Terrones, H. (2002). N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Applied Physics A, 74(3), 355–361.

    Article  CAS  Google Scholar 

  • Terrones, M., Jorio, A., Endo, M., Rao, A. M., Kim, Y. A., Hayashi, T., Terrones, H., Charlier, J., Dresselhaus, G., & Dresselhaus, M. S. (2004). New direction in nanotube science. Materials Today, 7(10), 30–45.

    Article  CAS  Google Scholar 

  • Terrones, M., Kamalakaran, R., Seeger, T., & Rühle, M. (2000). Novel nanoscale gas containers: encapsulation of N2 in CNx nanotubes. Chemical Communications, 23, 2335–2336.

    Article  Google Scholar 

  • Terrones, H., Terrones, M., & Morán-lópez, J. L. (2001). Curved nanomaterials. Current Science, 81, 1011–1029.

    CAS  Google Scholar 

  • Tessmer, C. H., Vidic, R. D., & Uranowski, L. J. (1997). Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environmental Science and Technology, 31(7), 1872–1878.

    Article  CAS  Google Scholar 

  • Wade, L. G. (1993). Organic chemistry (2nd ed.). Mexico City: Prentice Hall Hispanoamericana.

    Google Scholar 

  • Yang, K. U. N., Wu, W., Jing, Q., & Zhu, L. (2008). Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science and Technology, 42(21), 7931–7936.

    Article  CAS  Google Scholar 

  • Yu, F., Ma, J., & Wu, Y. (2012). Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl. Frontiers of Environmental Science & Engineering, 6(3), 320–329.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chang, L., Yan, N., Tang, Y., Liu, R., & Rittmann, B. E. (2014). UV photolysis for accelerating pyridine biodegradation. Environmental Science and Technology, 48(1), 649–655.

    Article  CAS  Google Scholar 

  • Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X., & Du, Z. (2003). Effect of chemical oxidation on the structure of single-walled carbon nanotubes. Journal of Physical Chemistry B, 107(16), 3712–3718.

    Article  CAS  Google Scholar 

  • Zhao, B., Liang, H. D., Han, D. M., Qiu, D., Chen, S. Q., Zhao, B., Liang, H., Han, D., Qiu, D., & Chen, S. (2007). Adsorption of pyridine from aqueous solution by surface treated carbon nanotubes. Separation Science and Technology, 42, 3419–3427.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Diaz-Flores appreciates the economical support from PROMEP/103.5/09/4244 and PROMEP/103.5/10/5475. The support from M.C. Dulce Partida-Gutierrez and IQ Eunice Elizabeth Villanueva Ruiz to conduct this investigation is also acknowledged. The help of Lilja Nielsen and Prof. Emeritus Richard Lindeke with the English language is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Díaz-Flores.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Flores, P.E., Arcibar-Orozco, J.A., Perez-Aguilar, N.V. et al. Adsorption of Organic Compounds onto Multiwall and Nitrogen-Doped Carbon Nanotubes: Insights into the Adsorption Mechanisms. Water Air Soil Pollut 228, 133 (2017). https://doi.org/10.1007/s11270-017-3314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3314-8

Keywords

Navigation