Skip to main content
Log in

Light Intensity Affects Ozone-Induced Stomatal Sluggishness in Snapbean

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Tropospheric ozone (O3) is the air pollutant of most concern to vegetation at present. Ozone impacts on stomata are still controversial, as both decreased stomatal conductance and slow stomatal responses to environmental stimuli (namely, stomatal sluggishness) have been shown. We postulated that the light environment affects stomatal sluggishness. To concurrently manipulate O3 and light conditions and measure gas exchange at leaf level, we developed an innovative O3 exposure system by modifying a commercially available gas exchange system. We exposed the first trifoliate leaf of the O3-sensitive genotype S156 of snapbean (Phaseolus vulgaris) to a 1-h O3 exposure (150 ppb) under 1000 μmol m−2 s−1 photosynthetic photon flux density, so that stomata were fully open and O3 uptake was maximized. Then, leaves were subjected to different light intensities (200, 1000, or 1500 μmol m−2 s−1) until a steady state was reached. As a metric of sluggishness, we quantified the stomatal responses to a sharp water stress generated by cutting the petiole at steady state. The results showed that O3 exposure induced stomatal sluggishness only under high light (stomata needed 53 % more time to half stomatal conductance relative to steady state) and did not when the plants were under lower light intensities. We conclude that O3-induced stomatal sluggishness may occur only in fully irradiated leaves, and suggest it is a minor response when entire crowns and canopies are assessed and a major reason of the higher O3 sensitivity of sun leaves than of shade leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Asada, K. (1996). Radical production and scavenging in the chloroplasts. In N. R. Baker (Ed.), Photosynthesis and Environment (pp. 123–150). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Baldocchi, D. (1989). Canopy-atmosphere water vapour exchange: Can we scale from a leaf to a canopy? In: Estimation of Areal Evapotranspiration. (pp. 21 – 41). IAHS Publication No.177.

  • Bauerle, W. L., Bowden, J. D., McLeod, M. F., & Toler, J. E. (2004). Modeling intra-crown and intra-canopy interactions in red maple: assessment of light transfer on carbon dioxide and water vapor exchange. Tree Physiology, 24, 589–597.

    Article  Google Scholar 

  • Buckley, T. N., Mott, K. A., & Farquhar, G. D. (2003). A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment, 26, 1767–1785.

    Article  CAS  Google Scholar 

  • Buckley, T. N., & Mott, K. A. (2000). Stomatal responses to non-local changes in PFD: evidence for long-distance hydraulic interactions. Plant Cell and Environment, 23, 301–309.

    Article  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Van Montagù, M., Chen, Z., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.

    Article  Google Scholar 

  • Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and environment. Symposium of the Society for Experimental Biology, 31, 471–505.

    CAS  Google Scholar 

  • Dumont, J., Cohen, D., Gérard, J., Jolivet, Y., Dizengremel, P., & Le Thiec, D. (2014). Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes. Plant, Cell and Environment, 37, 2064–2076.

    Article  CAS  Google Scholar 

  • Dumont, J., Spicher, F., Montpied, P., Dizengremel, P., Jolivet, Y., & Le Thiec, D. (2013). Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides x Populus nigra genotypes. Environmental Pollution, 173, 85–96.

    Article  CAS  Google Scholar 

  • Farage, P. K., & Long, S. P. (1995). An in vivo analysis of photosynthesis during short-term O3 exposure in three contrasting species. Photosynthesis Research, 43, 11–18.

    Article  CAS  Google Scholar 

  • Grantz, D. A. (1990). Plant response to atmospheric humidity. Plant, Cell and Environment, 13, 667–679.

    Article  Google Scholar 

  • Grulke, N. E., Neufeld, H. S., Davison, A. W., & Chappelka, A. (2007a). Stomatal behavior of O3-sensitive and -tolerant cutleaf coneflower (Rudbeckia laciniata var. digitata) Great Smoky Mountain National Park. New Phytologist, 173, 100–109.

    Article  CAS  Google Scholar 

  • Grulke, N. E., & Paoletti, E. (2005). A field system to deliver desired O3 concentrations in leaf-level gas exchange measurements: results for Holm oak near a CO2 spring. Phyton, 45, 21–31.

    CAS  Google Scholar 

  • Grulke, N. E., Paoletti, E., & Heath, R. L. (2007b). Comparison of calculated and measured foliar O3 flux in crop and forest species. Environmental Pollution, 146, 640–647.

    Article  CAS  Google Scholar 

  • Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M.,, Alexander, L.V., Brönnimann, S., Charabi, Y., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M., & Zhai, P.M. (2013). Observations: Atmosphere and Surface. In: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P.M. Midgley (Eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Hoshika, Y., Carriero, G., Feng, Z., Zhang, Y., & Paoletti, E. (2014). Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. Science of the Total Environment, 481, 453–458.

    Article  CAS  Google Scholar 

  • Hoshika, Y., Katata, G., Deushi, M., Watanabe, M., Koike, T., & Paoletti, E. (2015). Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Scientific Reports, 5, 09871.

    Article  CAS  Google Scholar 

  • Hoshika, Y., Omasa, K., & Paoletti, E. (2013a). Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environmental and Experimental Botany, 88, 19–23.

    Article  CAS  Google Scholar 

  • Hoshika, Y., Omasa, K., & Paoletti, E. (2012a). Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness. PLoS ONE, 7, e39270.

    Article  CAS  Google Scholar 

  • Hoshika, Y., Watanabe, M., Inada, N., & Koike, T. (2012b). Ozone-induced stomatal sluggishness develops progressively in Siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152–156.

    Article  CAS  Google Scholar 

  • Hoshika, Y., Watanabe, M., Inada, N., & Koike, T. (2013b). Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Annals of Botany, 112, 1149–1158.

    Article  CAS  Google Scholar 

  • Iwanoff, L. (1928). Zur Methodik der Transpirations-bestimmung am Standort. Berichte. Deutsche Botanische Gesellschaft, 46, 306–310.

    Google Scholar 

  • Kangasjärvi, J., Jaspers, P., & Kollist, H. (2005). Signalling and cell death in ozone-exposed plants. Plant, Cell and Environment, 28, 1021–1036.

    Article  Google Scholar 

  • Kappen, L., Andresen, G., & Losch, R. (1987). In situ observations of stomatal movements. Journal of Experimental Botany, 38, 126–141.

    Article  Google Scholar 

  • Lombardozzi, D., Levis, S., Bonan, G., & Sparks, J. P. (2012). Predicting photosynthesis and transpiration responses to ozone: Decoupling modeled photosynthesis and stomatal conductance. Biogeosciences, 9, 3113–3130.

    Article  CAS  Google Scholar 

  • Matyssek, R., & Sandermann, H. (2003). Impact of ozone on trees: an ecophysiological perspective. Progress in Botany, 64, 349–404.

    Article  CAS  Google Scholar 

  • McAinsh, M. R., Evans, N. H., Montgomery, L. T., & North, K. A. (2002). Calcium signalling in stomatal responses to pollutants. New Phytologist, 153, 441–447.

    Article  CAS  Google Scholar 

  • McLaughlin, S. B., Nosal, M., Wullschleger, S. D., & Sun, G. (2007). Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA. New Phytologist, 174, 109–124.

    Article  CAS  Google Scholar 

  • Meidner, H. (1986). Cuticular conductance and the humidity response of stomata. Journal of Experimental Botany, 177, 517–525.

    Article  Google Scholar 

  • Mills, G., Hayes, F., Wilkinson, S., & Davies, W. J. (2009). Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Change Biology, 15, 1522–1533.

    Article  Google Scholar 

  • Moeder, W., Barry, C. S., Tauriainen, A. A., Betz, C., Tuomainen, J., Utriainen, M., Grierson, D., Sandermann, H., Langebartels, C., & Kangasjärvi, J. (2002). Ethylene synthesis regulated by biphasic induction of 1-aminocyclopro-pane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiology, 130, 1918–1926.

    Article  CAS  Google Scholar 

  • Mott, K. A., Denne, F., & Powell, J. (1997). Interactions among stomata in response to perturbations in humidity. Plant, Cell and Environment, 20, 1098–1107.

    Article  Google Scholar 

  • Onandia, G., Olsson, A. K., Barth, S., King, J. S., & Uddling, J. (2011). Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution, 159, 2350–2354.

    Article  CAS  Google Scholar 

  • Overmyer, K., Kollist, H., Tuominen, H., Bets, C., Langebartels, C., Wingsle, G., Kangasjärvi, S., Brader, G., Mullineauz, P., & Kangasjärvi, J. (2008). Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants. Plant, Cell and Environment, 31, 1237–1249.

    Article  CAS  Google Scholar 

  • Paoletti, E. (2005). Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo. Environmental Pollution, 134, 439–445.

    Article  CAS  Google Scholar 

  • Paoletti, E. (2007). Ozone impacts on forests. CAB Reviews. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2. (No. 68), 13p.

  • Paoletti, E., Contran, N., Benasconi, P., Günthardt-Goerg, M. S., & Vollenweider, P. (2009). Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Science of the Total Environment, 407, 1631–1643.

    Article  CAS  Google Scholar 

  • Paoletti, E., & Grulke, N. E. (2005). Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environmental Pollution, 137, 483–493.

    Article  CAS  Google Scholar 

  • Paoletti, E., & Grulke, N. E. (2010). Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environmental Pollution, 158, 2664–2671.

    Article  CAS  Google Scholar 

  • Paoletti, E., De Marco, A., & Racalbuto, S. (2007). Why should we calculate complex indices of ozone exposure? Results from Mediterranean background stations. Environmental Monitoring and Assessment, 128, 19–30.

    Article  CAS  Google Scholar 

  • Paoletti, E., Nali, C., & Lorenzini, G. (2002). Photosynthetic behavior of two Italian clones of European beech (Fagus sylvatica Mill.) exposed to ozone. Phyton Annales Rei Botanicae, 42, 149–155.

    CAS  Google Scholar 

  • Paoletti, E., Schaub, M., Matyssek, R., Wieser, G., Augustaitis, A., Bastrup-Birk, A. M., Bytnerowicz, A., Günthardt-Goerg, M. S., Müller-Starck, G., & Serengil, Y. (2010). Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environmental Pollution, 158, 1986–1989.

    Article  CAS  Google Scholar 

  • Powles, J. E., Buckley, T. N., Nicotra, A. B., & Farquhar, G. D. (2006). Dynamics of stomatal water relations following leaf excision. Plant, Cell and Environment, 29, 981–992.

    Article  Google Scholar 

  • Raschke, K. (1970). Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. Plant Physiology, 45, 415–423.

    Article  CAS  Google Scholar 

  • Saji, H., Kubo, A., Aono, M., Nakajima, N., & Tamaoki, M. (2002). Two hypothesis for the mechanisms of ozone injury of plants. Journal of Japan Society for Atmospheric Environment, 37, A57–A62 (in Japanese).

    CAS  Google Scholar 

  • Sprintsin, M., Chen, J. M., Desai, A., & Gough, C. M. (2012). Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research, 117, G01023.

    Article  Google Scholar 

  • Tanaka, K. (1988). Anthropogenic air pollutants. Protein, Nucleic Acid and Enzyme, 33, 2824–2829 (in Japanese).

    CAS  Google Scholar 

  • Torsethaugen, G., Pell, E. J., & Assmann, S. M. (1999). Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proceeding of the National Academy of Sciences, 96, 12577–12582.

    Article  Google Scholar 

  • Uddling, J., Teclaw, R. M., Pregitzer, K. S., & Ellsworth, D. S. (2009). Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiology, 29, 1367–1380.

    Article  CAS  Google Scholar 

  • Vahisalu, T., Puzorjova, I., Brosche, M., Valk, E., Lepiku, M., Moldau, H., Pechter, P., Wang, Y.-S., Lindgren, O., Salojarvi, J., Loog, M., Kangasjarvi, J., & Kollist, H. (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal, 62, 442–453.

    Article  CAS  Google Scholar 

  • Vollsnes, A. V., Eriksen, A. B., Otterholt, E., Kvaal, K., Oxaal, U., & Futsaether, C. M. (2009). Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium subterraneum. Journal of Experimental Botany, 60, 3677–3686.

    Article  CAS  Google Scholar 

  • Watanabe, M., Hoshika, Y., Inada, N., & Koike, T. (2014). Canopy carbon budget of Siebold’s beech (Fagus crenata) sapling under free air ozone exposure. Environmental Pollution, 184, 682–689.

    Article  CAS  Google Scholar 

  • Wilkinson, S., & Davies, W. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant, Cell and Environment, 33, 510–525.

    Article  CAS  Google Scholar 

  • Wittig, V. E., Ainsworth, E. A., & Long, S. P. (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell and Environment, 30, 1150–1162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from a grant-in-aid by the Japanese Society for Promotion of Science (Young Scientists B 24780239 and postdoctoral fellowship for research abroad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Paoletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshika, Y., De Marco, A., Materassi, A. et al. Light Intensity Affects Ozone-Induced Stomatal Sluggishness in Snapbean. Water Air Soil Pollut 227, 419 (2016). https://doi.org/10.1007/s11270-016-3127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3127-1

Keywords

Navigation