Skip to main content

Advertisement

Log in

Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The mechanism of iodine uptake by plants from soil is the interest of many studies, though the information about the uptake mechanism and iodine mobility in soil is still insufficient. The uptake of the most common naturally occurring iodine species in soil—iodide and iodate by barley (Hordeum vulgare L.) from iodine-spiked soil and agar cultivation media was evaluated in our study based on laboratory pot and petri dish experiments. Soil pot experiments were conducted in two stages: after iodine spiking and after a 3-month aging period taking account on the processes that can influence iodine bioavailability. Our results indicate that iodine bioavailability does depend on the form of iodine present in the growth substrate, the character of the substrate itself, and the time between iodine application and plant cultivation. The loss of iodine from soil via volatilization can also be a limiting factor to iodine bioavailability. Our results provide additional information on iodine mobility and behavior in soil and suggest plants’ essential role in biogeochemical cycle of iodine. We also highlighted importance of iodine source and speciation on the base level of the food chain where iodine mobility and bioavailability is limited by its chemical form, substrate characteristics, and intensity of natural biogeochemical processes related to iodine biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amachi, S., Kasahara, M., Hanada, S., Kamagata, Y., Shinoyama, H., Fujii, T., & Muramatsu, Y. (2003). Microbial participation in iodine volatilization from soils. Environmental Science and Technology, 37, 3885–3890. doi:10.1021/es0210751.

    Article  CAS  Google Scholar 

  • Ashworth, D. J., Shaw, G., Butler, A. P., & Ciciani, L. (2003). Soil transport and plant uptake of radio-iodine from near-surface groundwater. Journal of Environmental Radioactivity, 70, 99–114. doi:10.1016/S0265-931X(03)00121-8.

    Article  CAS  Google Scholar 

  • Ban-nai, T., Muramatsu, Y., & Amachi, S. (2006). Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere, 65, 2216–2222. doi:10.1016/j.chemosphere.2006.05.047.

    Article  CAS  Google Scholar 

  • Caffagni, A., Arru, L., Meriggi, P., Milc, J., Perata, P., & Pecchioni, N. (2011). Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Communications in Soil Science and Plant Analysis, 42, 706–718. doi:10.1080/00103624.2011.550372.

    Article  CAS  Google Scholar 

  • Caffagni, A., et al. (2012). Iodine uptake and distribution in horticultural and fruit tree species Italian. Journal of Agronomy, 7, 32.

    Google Scholar 

  • Comandini, P., Cerretani, L., Rinaldi, M., Cichelli, A., & Chiavaro, E. (2013). Stability of iodine during cooking: investigation on biofortified and not fortified vegetables. International Journal of Food Sciences and Nutrition, 64, 857–861. doi:10.3109/09637486.2013.798270.

    Article  CAS  Google Scholar 

  • Dai, J.-L., Zhang, M., & Zhu, Y.-G. (2004). Adsorption and desorption of iodine by various Chinese soils: I. Iodate. Environment International, 30, 525–530. doi:10.1016/j.envint.2003.10.007.

    Article  CAS  Google Scholar 

  • Dai, J. L., Zhang, M., Hu, Q. H., Huang, Y. Z., Wang, R. Q., & Zhu, Y. G. (2009). Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma, 153, 130–135. doi:10.1016/j.geoderma.2009.07.020.

    Article  CAS  Google Scholar 

  • Emerson, H. P., et al. (2014). Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments. Applied Geochemistry, 45, 105–113. doi:10.1016/j.apgeochem.2014.03.002.

  • Englund, E., Aldahan, A., Hou, X. L., Petersen, R., & Possnert, G. (2010). Speciation of iodine (127I and 129I) in lake sediments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1102–1105. doi:10.1016/j.nimb.2009.10.109.

    Article  CAS  Google Scholar 

  • Fecher, A. P., Goldmann I., Nagengast A. (1998). Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. Journal of Analytical Atomic Spectrometry 13, 977–982. doi:10.1039/a801671b

  • Fiala, K. (1999). Záväzné metódy rozborov pôd (1st ed.). Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy Bratislava.

    Google Scholar 

  • Fuhrmann, M., Bajt, S., & Schoonen, M. A. A. (1998). Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and 125I tracer sorption experiments. Applied Geochemistry, 13, 127–141. doi:10.1016/S0883-2927(97)00068-1.

    Article  CAS  Google Scholar 

  • Hansen, V., Roos, P., Aldahan, A., Hou, X., & Possnert, G. (2011). Partition of iodine (129I and 127I) isotopes in soils and marine sediments. Journal of Environmental Radioactivity, 102, 1096–1104. doi:10.1016/j.jenvrad.2011.07.005.

    Article  CAS  Google Scholar 

  • Hlodák, M., Urík, M., Matúš, P., & Kořenková, L. (2016). Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation. International Journal of Phytoremediation, 18, 195–199. doi:10.1080/15226514.2015.1073675.

    Article  Google Scholar 

  • Hong, C.-L., Weng, H.-X., Yan, A.-L., & Islam, E.-U. (2009). The fate of exogenous iodine in pot soil cultivated with vegetables. Environmental Geochemistry and Health, 31, 99–108. doi:10.1007/s10653-008-9169-6.

    Article  CAS  Google Scholar 

  • Hu, Q.H., Moran J.E., Blackwood, B., (2009). Geochemical cycling of iodine species in soils comprehensive handbook of iodine: nutritional, biochemical, pathological and therapeutic aspects. 93–105. doi:10.1016/b978-0-12-374135-6.00010-8.

  • Johnson, C.C. (2003). The geochemistry of iodine and its application to environmental strategies for reducing the risks from iodine deficiency disorders (IDD). (CR/03/057N).

  • Kato, S., et al. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Frontiers in Plant Science, 4, 227. doi:10.3389/fpls.2013.00227.

    Article  Google Scholar 

  • Korobova, E. (2010). Soil and landscape geochemical factors which contribute to iodine spatial distribution in the main environmental components and food chain in the central Russian plain. Journal of Geochemical Exploration, 107, 180–192. doi:10.1016/j.gexplo.2010.03.003.

    Article  CAS  Google Scholar 

  • Lawson, P. G., Daum, D., Czauderna, R., Meuser, H., & Hartling, J. W. (2015). Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Frontiers in Plant Science, 6, 450. doi:10.3389/fpls.2015.00450.

    Article  Google Scholar 

  • Mackowiak, C. L., & Grossl, P. R. (1999). Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil, 212, 133–141. doi:10.1023/a:1004666607330.

    Article  Google Scholar 

  • Muramatsu, Y., & Wedepohl, H. K. (1998). The distribution of iodine in the earth’s crust. Chemical Geology, 147, 201–216. doi:10.1016/S0009-2541(98)00013-8.

    Article  CAS  Google Scholar 

  • Muramatsu, Y., Yoshida, S., Fehn, U., Amachi, S., & Ohmomo, Y. (2004). Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment. Journal of Environmental Radioactivity, 74, 221–232. doi:10.1016/j.jenvrad.2004.01.011.

    Article  CAS  Google Scholar 

  • Redeker, K. R., Treseder, K. K., & Allen, M. F. (2004). Ectomycorrhizal fungi: a new source of atmospheric methyl halides? Global Change Biology, 10, 1009–1016. doi:10.1111/j.1529-8817.2003.00782.x.

    Article  Google Scholar 

  • Reiller, P., Mercier-Bion, F., Gimenez, N., Barré, N., & Miserque, F. (2006). Iodination of humic acid samples from different origins. Radiochimica Acta, 94, 739. doi:10.1524/ract.2006.94.9-11.739.

    Article  CAS  Google Scholar 

  • Ren, Q., Fan, J., Zhang, Z., Zheng, X., & Delong, G. R. (2008). An environmental approach to correcting iodine deficiency: supplementing iodine in soil by iodination of irrigation water in remote areas. Journal of Trace Elements in Medicine and Biology, 22, 1–8. doi:10.1016/j.jtemb.2007.09.003.

    Article  CAS  Google Scholar 

  • Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89, 27–41. doi:10.1007/s11120-006-9065-9.

    Article  CAS  Google Scholar 

  • Šeda, M., et al. (2012). The effect of volcanic activity of the Eyjafjallajökul volcano on iodine concentration in precipitation in the Czech Republic. Chemie der Erde - Geochemistry, 72, 279–281. doi:10.1016/j.chemer.2012.04.004.

    Article  Google Scholar 

  • Sheppard, S. C., & Motycka, M. (1997). Is the akagare phenomenon important to iodine uptake by wild rice (Zizania aquatica)? Journal of Environmental Radioactivity, 37, 339–353. doi:10.1016/S0265-931X(96)00077-X.

    Article  CAS  Google Scholar 

  • Shinonaga, T., Gerzabek, M. H., Strebl, F., & Muramatsu, Y. (2001). Transfer of iodine from soil to cereal grains in agricultural areas of Austria. The Science of the Total Environment, 267, 33–40.

    Article  CAS  Google Scholar 

  • Smolen, S., & Sady, W. (2012). Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Scientia Horticulturae, 143, 176–183. doi:10.1016/j.scienta.2012.06.006.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Weng, H.-X., Yan, A.-L., Hong, C.-L., Qin, Y.-C., Pan, L., & Xie, L.-L. (2008). Biogeochemical transfer and dynamics of iodine in a soil–plant system. Environmental Geochemistry and Health, 31, 401–411. doi:10.1007/s10653-008-9193-6.

    Article  Google Scholar 

  • Weng, H., Hong, C., Xia, T., Bao, L., Liu, H., & Li, D. (2013). Iodine biofortification of vegetable plants—an innovative method for iodine supplementation. Chinese Science Bulletin, 58, 2066–2072. doi:10.1007/s11434-013-5709-2.

    Article  CAS  Google Scholar 

  • Whitehead, D. D. C. (1975). Uptake by perennial ryegrass of iodide, elemental iodine and iodate added to soil as influenced by various amendments. Journal of the Science of Food and Agriculture, 26, 361–367. doi:10.1002/jsfa.2740260317.

    Article  CAS  Google Scholar 

  • WHO. (2007). Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers (3rd ed.). Geneva: World Health Organisation.

    Google Scholar 

  • Yamada, H., Kiriyama, T., & Yonebayashi, K. (1996). Determination of total iodine in soils by inductively coupled plasma mass spectrometry. Soil Science and Plant Nutrition, 42, 859–866. doi:10.1080/00380768.1996.10416633.

    Article  CAS  Google Scholar 

  • Yuita, K. (1992). Dynamics of iodine, bromine, and chlorine in soil. Soil Science and Plant Nutrition, 38, 281–287. doi:10.1080/00380768.1992.10416491.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Huang, Y. Z., Hu, Y., & Liu, Y. X. (2003). Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environment International, 29, 33–37. doi:10.1016/s0160-4120(02)00129-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Comenius University in Bratislava under the contract no. UK/132/2016 and by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under the contracts no. VEGA 1/0203/14 and VEGA 1/0836/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Duborská.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duborská, E., Urík, M., Bujdoš, M. et al. Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.). Water Air Soil Pollut 227, 407 (2016). https://doi.org/10.1007/s11270-016-3112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3112-8

Keywords

Navigation