Skip to main content
Log in

Arsenic Speciation by Sequential Extraction from As-Fe Precipitates Formed Under Different Coagulation Conditions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The As(V) extraction in the pH-dependent As(V)-Fe(III) precipitates and the corresponding interaction mechanism of As(V) with ferric iron coagulant were systematically investigated in this study. Generally, As(V) removal by coagulation was more susceptible to the influence of the solution pH than that of the coagulant dosage. There was a distinctively bell-shaped pattern for As(V) removal with increasing the solution pHini from 4.6 to 9.4 with varied mass ratios of Fe/As. Specifically, the removal efficiencies of As(V) were enhanced progressively with increasing pH from 4.6 to 6.2. However, As(V) removal declined appreciably as pH further increased to 9.4. The maximum uptake capacities of As(V) by the precipitates were 1.21, 1.10, and 0.95 mg As per mg Fe at pHini 6.2 with the Fe/As mass ratio of 0.6, 0.8, and 1.0, respectively. Approximately 99 % of sorbed amorphous hydrous and crystalline hydrous oxide-bound As(V) were extracted in bearing-As(V) precipitates at relevant pHini values (i.e., 5.0, 7.0, and 9.0), implying that the main mechanism governing As(V) removal process was forming the inner sphere complexes, which can cause much more powerful forces than chemical compounds. Moreover, it has been accounted well with the performances of floc coagulation for As(V) removal evidenced by the characterizations of the floc size distribution, the floc fractal dimension, and the Fourier transform infrared spectroscopy (FT-IR) spectra, respectively. Considering that As extraction can provide insights for understanding As speciation and mobility in settled precipitates, this study will definitely count much in predicting the long-term risks of As-Fe sediments to the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baskan, M. B., & Pala, A. (2009). Determination of arsenic removal efficiency by ferric ions using response surface methodology. Journal of Hazardous materials, 166(2), 796–801.

    Article  CAS  Google Scholar 

  • Ben-Issa, N., Rajakovic-Ognjanovic, V. N., Jovanovic, B. M., & Rajakovic, L. V. (2010). Determination of inorganic arsenic species in natural waters—benefits of separation and preconcentration on ion exchange and hybrid resins. Analytica Chimica Acta, 673(2), 185–193.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochimica et Hydrobiologica, 31(2), 97–107.

    Article  CAS  Google Scholar 

  • Burton, E. D., Bush, R. T., Johnston, S. G., Watling, K. M., Hocking, R. K., Sullivan, L. A., & Parker, G. K. (2009). Sorption of arsenic (V) and arsenic (III) to schwertmannite. Environmental Science & Technology, 43(24), 9202–9207.

    Article  CAS  Google Scholar 

  • Cao, B. C., Gao, B. Y., Liu, X., Wang, M. M., Yang, Z. L., & Yue, Q. Y. (2011). The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment. Water Research, 45(18), 6181–6188.

    Article  CAS  Google Scholar 

  • Castaldi, P., Silvetti, M., Enzo, S., & Melis, P. (2010). Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste). Journal of Hazardous materials, 175(1–3), 172–178.

    Article  CAS  Google Scholar 

  • Castaldi, P., Silvetti, M., Santona, L., Enzo, S., & Melis, P. (2008). XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays and Clay Minerals, 56(4), 461–469.

    Article  CAS  Google Scholar 

  • Cernansky, S., Urik, M., Sevc, J., & Khun, M. (2007). Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environmental Science and Pollution Research, 14(1), 31–35.

    Article  CAS  Google Scholar 

  • Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. M., & Wai, C. M. (1994). Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environmental Science & Technology, 28(5), 877–881.

    Article  CAS  Google Scholar 

  • Clancy, T. M., Hayes, K. F., & Raskin, L. (2013). Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. Environmental Science & Technology, 47(19), 10799–10812.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

    Article  CAS  Google Scholar 

  • Dong, H. Y., Gao, B. Y., Yue, Q. Y., Sun, S. L., Wang, Y., & Li, Q. (2014). Floc properties and membrane fouling of different monomer and polymer Fe coagulants in coagulation-ultrafiltration process: the role of Fe (III) species. Chemical Engineering Journal, 258, 442–449.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270–275.

    Article  CAS  Google Scholar 

  • Geucke, T., Deowan, S. A., Hoinkis, J., & Patzold, C. (2009). Performance of a small-scale RO desalinator for arsenic removal. Desalination, 239(1–3), 198–206.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234(1), 204–216.

    Article  CAS  Google Scholar 

  • Guan, X. H., Dong, H. R., Ma, J., Lo, I. M. C., & Dou, X. M. (2011). Performance and mechanism of simultaneous removal of chromium and arsenate by Fe (II) from contaminated groundwater. Separation and Purification Technology, 80(1), 179–185.

    Article  CAS  Google Scholar 

  • Guan, X. H., Du, J. S., Meng, X. G., Sun, Y. K., Sun, B., & Hu, Q. H. (2012). Application of titanium dioxide in arsenic removal from water: a review. Journal of Hazardous materials, 215, 1–16.

    Article  Google Scholar 

  • Guan, X. H., Ma, J., Dong, H. R., & Jiang, L. (2009). Removal of arsenic from water: effect of calcium ions on As (III) removal in the KMnO4-Fe (II) process. Water Research, 43(20), 5119–5128.

    Article  CAS  Google Scholar 

  • Guan, X. H., Wang, J. M., & Chusuei, C. C. (2008). Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. Journal of Hazardous materials, 156(1–3), 178–185.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.

    Article  CAS  Google Scholar 

  • Karim, M. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34(1), 304–310.

    Article  CAS  Google Scholar 

  • Khan, M. M. T., Yamamoto, K., & Ahmed, M. F. (2002). A low cost technique of arsenic removal from drinking water by coagulation using ferric chloride salt and alum. 2nd World Water Congress: Drinking Water Treatment, 2(2), 281–288.

    CAS  Google Scholar 

  • Kim, J., & Benjamin, M. M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38(8), 2053–2062.

    Article  CAS  Google Scholar 

  • Li, J. X., Shi, Z., Ma, B., Zhang, P. P., Jiang, X., Xiao, Z. J., & Guan, X. H. (2015). Improving the reactivity of zerovalent iron by taking advantage of its magnetic memory: implications for arsenite removal. Environmental Science & Technology, 49(17), 10581–10588.

    Article  CAS  Google Scholar 

  • Li, T., Zhu, Z., Wang, D. S., Yao, C. H., & Tang, H. X. (2006). Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology, 168(2), 104–110.

    Article  CAS  Google Scholar 

  • Lin, J. L., Huang, C. P., Chin, C. J. M., & Pan, J. R. (2008). Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms. Water Research, 42(17), 4457–4466.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235.

    Article  CAS  Google Scholar 

  • McNeill, L. S., & Edwards, M. (1997a). Arsenic removal during precipitative softening. Journal of Environmental Engineering-Asce, 123(5), 453–460.

    Article  CAS  Google Scholar 

  • McNeill, L. S., & Edwards, M. (1997b). Predicting as removal during metal hydroxide precipitation. Journal American Water Works Association, 89(1), 75–86.

    CAS  Google Scholar 

  • Meng, X. G., Bang, S., & Korfiatis, G. P. (2000). Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Research, 34(4), 1255–1261.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous materials, 142(1–2), 1–53.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700), 338–338.

    Article  CAS  Google Scholar 

  • Pallier, V., Feuillade-Cathalifaud, G., Serpaud, B., & Bollinger, J. C. (2010). Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science, 342(1), 26–32.

    Article  CAS  Google Scholar 

  • Qiao, J. L., Jiang, Z., Sun, B., Sun, Y. K., Wang, Q., & Guan, X. H. (2012). Arsenate and arsenite removal by FeCl3: effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Separation and Purification Technology, 92, 106–114.

    Article  CAS  Google Scholar 

  • Rodriguez-Lado, L., Sun, G. F., Berg, M., Zhang, Q., Xue, H. B., Zheng, Q. M., & Johnson, C. A. (2013). Groundwater arsenic contamination throughout China. Science, 341(6148), 866–868.

    Article  CAS  Google Scholar 

  • Ruan, H. D., Frost, R. L., & Kloprogge, J. T. (2001). The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(13), 2575–2586.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Sun, Y. K., Guan, X. H., Wang, J. M., Meng, X. G., Xu, C. H., & Zhou, G. M. (2014). Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation. Environmental Science & Technology, 48(12), 6850–6858.

    Article  CAS  Google Scholar 

  • Sun, Y. K., Xiong, X. M., Zhou, G. M., Li, C. Y., & Guan, X. H. (2013a). Removal of arsenate from water by coagulation with in situ formed versus pre-formed Fe (III). Separation and Purification Technology, 115, 198–204.

    Article  CAS  Google Scholar 

  • Sun, Y. K., Zhou, G. M., Xiong, X. M., Guan, X. H., Li, L. N., & Bao, H. L. (2013b). Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Research, 47(13), 4340–4348.

    Article  CAS  Google Scholar 

  • Tripathy, S. S., & Raichur, A. M. (2008). Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As (V) from water. Chemical Engineering Journal, 138(1–3), 179–186.

    Article  CAS  Google Scholar 

  • Waite, T. D., Cleaver, J. K., & Beattie, J. K. (2001). Aggregation kinetics and fractal structure of gamma-alumina assemblages. Journal of Colloid and Interface Science, 241(2), 333–339.

    Article  CAS  Google Scholar 

  • Wang, Y., Duan, J., Liu, S., Li, W., van Leeuwen, J., & Mulcahy, D. (2014). Removal of As (III) and As (V) by ferric salts coagulation—implications of particle size and zeta potential of precipitates. Separation and Purification Technology, 135, 64–71.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323.

    Article  CAS  Google Scholar 

  • Zaspalis, V., Pagana, A., & Sklari, S. (2007). Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination, 217(1–3), 167–180.

    Article  CAS  Google Scholar 

  • Zhang, Z. B., Li, J. X., Sun, C. Z., Zhang, Y. H., Huang, L. L., & Wang, M. (2014). The influence of dosing modes of coagulate on arsenic removal. Journal of Chemistry, 2014, 1–7.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong Province Financial Department and Environmental Protection Bureau (Grant SDZS-2012-SHBT01), Shandong Jianzhu University (Grant XNBS1228), and Taishan Scholar Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuizhen Sun or Wen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, J., Sun, C. et al. Arsenic Speciation by Sequential Extraction from As-Fe Precipitates Formed Under Different Coagulation Conditions. Water Air Soil Pollut 227, 309 (2016). https://doi.org/10.1007/s11270-016-3019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3019-4

Keywords

Navigation