Skip to main content
Log in

Modeling the Risk of the Salt for Polluting Groundwater Irrigation with Recycled Water and Ground Water Using HYDRUS-1 D

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Long-term irrigation with recycled water (RW) that contains high salt may pollute groundwater. The HYDRUS-1D model was texted against soil water content and electrical conductivity (ECe) observed in a summer maize and winter wheat rotational field irrigated with ground water (GW) and RW; then, the risk for polluting groundwater in two regions of Beijing was evaluated. The comparisons indicated that the simulated soil water content and ECe values were generally in agreement with the field observations, indicating the reliability of HYDRUS-1D in soils irrigated with GW and RW. The regional prediction results of the proposed simulation model indicated that the average soil ECe at the bottom of vadose zones ranged from 0.400 to 0.896 dS m−1, and the values in the Tongzhou and Daxing Districts irrigated with RW were 1.40 and 1.09 times, respectively, higher than that irrigated with GW over the next 50 years. Five risk indicators represent salt transporting time and values were used. The results of the proposed evaluation model showed that the risk scores ranged from 3.04 to 9.32. In the Tongzhou and Daxing Districts, the risk scores of RW irrigation for polluting groundwater were 1.06 and 1.08 times, respectively, higher than that GW irrigation. The risk scores of GW or RW irrigation for polluting groundwater in the Tongzhou District were 1.75 or 1.72 times, respectively, higher than that in the Daxing District. Considering the small risk difference between GW and RW irrigations, RW can be used in both regions. Due to the different vadose zone structures, the Daxing District is more suitable for RW irrigation. The long-term use of RW for irrigation should consider the salt content of RW and vadose zone structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akponikpè, P. B. I., Wima, K., Yacouba, H., & Mermoud, A. (2011). Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: benefits and risks. Agric Water Manag, 98, 834–840.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, UN- FAO, Rome.1–15p.

  • Anane, M., Bouziri, L., Limam, A., & Jellali, S. (2012). Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis. Resour Conserv Recycl, 65, 36–46.

    Article  Google Scholar 

  • Beltrán, J. M. (1999). Irrigation with saline water: benefits and environmental impact. Agric Water Manag, 40, 183–194.

    Article  Google Scholar 

  • Blum, J., Melfi, A. J., Montes, C. R., & Gomes, T. M. (2013). Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent. Agric Water Manag, 117, 115–122.

    Article  Google Scholar 

  • Candela, L., Fabregat, S., Josa, A., Suriol, J., Vigués, N., & Mas, J. (2007). Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: application in a golf course (Girona, Spain). Sci Total Environ, 374, 26–35.

    Article  CAS  Google Scholar 

  • Chang, D. H., & Ma, Z. (2012). Wastewater reclamation and reuse in Beijing: influence factors and policy implications. Desalination, 297, 72–78.

    Article  CAS  Google Scholar 

  • Chen, W. P., Lu, S. D., Jiao, W. T., Wang, M. E., & Chang, A. C. (2013). Reclaimed water: a safe irrigation water source? Environmental Development, 8, 74–83.

    Article  Google Scholar 

  • Cheng, J., & Tao, J. P. (2010). Fuzzy comprehensive evaluation of drought vulnerability based on the Analytic Hierarchy Process—an empirical study from Xiaogan city in Hubei province. Agriculture and Agricultural Science Procedia, 1, 126–135.

    Article  Google Scholar 

  • Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. Center for Agricultural Publishing and Documentation (PUDOC), Wageningen, The Netherlands, 189p.

  • Forkutsa, I., Sommer, R., Shirokova, Y. I., Lamers, J. P. A., Kienzler, K., Tischbein, B., et al. (2009). Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil salinity dynamics. Irrig Sci, 27, 319–330.

    Article  Google Scholar 

  • Gharaibeh, M. A., Eltaif, N. I., & Al-Abdullah, B. (2007). Impact of field application of treated wastewater on hydraulic properties of vertisols. Water Air Soil Pollut, 184, 347–353.

    Article  CAS  Google Scholar 

  • Gibson, R., Durán-Álvarez, J. C., Estrada, K. L., Chávez, A., & Cisneros, B. J. (2010). Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 81, 1437–1445.

    Article  CAS  Google Scholar 

  • Hardie, M. A., Lisson, S., Doyle, R. B., & Cotching, W. E. (2013). Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil Tillage Res, 130, 99–108.

    Article  Google Scholar 

  • Inoue, M., Šimůnek, J., Shiozawa, S., & Hopmans, J. W. (2000). Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments. Adv Water Resour, 23, 677–688.

    Article  Google Scholar 

  • Jalali, M., Merikhpour, H., Kaledhonkar, M. J., & Van Der Zee, S. E. A. T. M. (2008). Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils. Agric Water Manag, 95, 143–153.

    Article  Google Scholar 

  • Kanzari, S., Hachicha, M., Bouhlila, R., & Battle-Sales, J. (2012). Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bou Hajla, Kairouan)—salinization risk of soils and aquifers. Comput Electron Agric, 86, 34–42.

    Article  Google Scholar 

  • Katz, B. G., Griffin, D. W., & Davis, J. H. (2009). Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators. Sci Total Environ, 407, 2872–2886.

    Article  CAS  Google Scholar 

  • Kayikcioglu, H. H. (2012). Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions. J Environ Manag, 102, 108–114.

    Article  CAS  Google Scholar 

  • Khan, S., Aijun, L., Zhang, S. Z., Hu, Q. H., & Zhu, Y. G. (2008). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater, 152, 506–515.

    Article  CAS  Google Scholar 

  • Kou, X. J., Ge, J. P., Wang, Y., & Zhang, C. J. (2007). Validation of the weather generator CLIGEN with daily precipitation data from the Loess Plateau, China. J Hydrol, 347, 347–357.

    Article  Google Scholar 

  • Lambers, H. (2003). Dryland salinity: a key environmental issue in southern Australia. Plant Soil, 257, 5–7.

    Article  Google Scholar 

  • Levine, A. D., & Asano, T. (2004). Recovering sustainable water from wastewater. Environ Sci Technol, 38, 201A–208A.

    Article  CAS  Google Scholar 

  • Milnes, E., & Perrochet, P. (2005). Direct simulation of solute recycling in irrigated areas. Adv Water Resour, 29, 1140–1154.

    Article  Google Scholar 

  • Mounzer, O., Pedrero-Salcedo, F., Nortes, P. A., Bayona, J. M., Nicolás-Nicolás, E., & Alarcón, J. J. (2013). Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees. Agric Water Manag, 120, 23–29.

    Article  Google Scholar 

  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res, 12, 513–522.

    Article  Google Scholar 

  • Muyen, Z., Moore, G. A., & Wrigley, R. J. (2011). Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agric Water Manag, 99, 33–41.

    Article  Google Scholar 

  • Pedrero, F., & Alarcón, J. J. (2009). Effects of treated wastewater irrigation on lemon trees. Desalination, 246, 631–639.

    Article  CAS  Google Scholar 

  • Pedrero, F., Albuquerque, A., Marecos do Monte, H., Cavaleiro, V., & Alarcón, J. J. (2011). Application of GIS-based multi-criteria analysis for site selection of aquifer recharge with reclaimed water. Resour Conserv Recycl, 56, 105–116.

    Article  Google Scholar 

  • Piao, S. L., Ciais, P., Huang, Y., Shen, Z. H., Peng, S. S., Li, J. S., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51.

    Article  CAS  Google Scholar 

  • Ramos, T. B., Šimůnek, J., Goncalves, M. C., Martins, J. C., Prazeres, A., Castanheira, N. L., et al. (2011). Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J Hydrol, 407, 129–144.

    Article  CAS  Google Scholar 

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources and Research, 8, 1204–1213.

    Article  Google Scholar 

  • Rodríguez-Liébana, J. A., Mingorance, M. D., & Peña, A. (2011). Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts. J Environ Manag, 92, 650–654.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. J Math Psychol, 15, 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (2008). The analytic network process. Iranian Journal of Operations Research, 1, 1–27.

    Google Scholar 

  • Shang, F. Z., Ren, S. M., Zou, T., Yang, P. L., & Sun, N. (2014). Impact of simulated irrigation with treated wastewater and saline-sodic solutions on soil hydraulic conductivity, pore distribution and fractal dimension. Computer and Computing Technologies in Agricultural VII, IFIP Advances in Information and Communication Technology, 419, 502–516.

    Article  Google Scholar 

  • Šimůnek, J., Suarez, D. L., & Šejna, M. (1996). The UNSATCHEM software package for simulating one-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 2.0, Res. Rep. 141, US Salinity Lab., Agric. Res. Serv., Riverside, Calif.

  • Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2006). The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, technical manual. Version 1.0, PC Progress, Prague, Czech Republic.

  • Šimůnek, J., & van Genuchten, M. T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J, 7, 782–797.

    Article  Google Scholar 

  • Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J, 7, 587–600.

    Article  Google Scholar 

  • Singh, P. K., Deshbhratar, P. B., & Ramteke, D. S. (2012). Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric Water Manag, 103, 100–104.

    Article  Google Scholar 

  • Sun, J. X., Kang, Y. H., Wan, S. Q., Hu, W., Jiang, S. F., & Zhang, T. B. (2012). Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils. Agric Water Manag, 115, 10–19.

    Article  Google Scholar 

  • Tejedor, M., Jiménez, C., Hernández-Moreno, J. M., & Díaz, F. (2011). Tephra-mulched soils irrigated with reclaimed urban wastewater in former dry-farming systems of Lanzarote (Spain). Catena, 84, 108–113.

    Article  CAS  Google Scholar 

  • van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., van Valsum, P. E. V., et al. (1997). Theory of SWAP, version 2.0: simulation of water flow, solute transport and plant growth in the Soil–Water–Atmosphere–Plant environment. Dept. Water Resources, WAU, Report 71, Technical Document 45. DLO Winand Staring Centre, Wageningen, the Netherlands.

  • van Genuchen, M. T., & Šimůnek, J. (2004). Integrated modeling of vadose zone flow and transport processes. In: Feddes, R.A., de Rooij, G.H., van Dam, J.C. (Eds.), Proc. Unsaturated zone modelling: progress, challenges and applications, Wageningen, The Netherlands, 37-69pp (October 3–5).

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 44, 892–898.

    Article  Google Scholar 

  • van Genuchten, M. T., Lesch, S. M., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Version 1.0. U.S. Salinity Laboratory, USDA, Riverside.

  • Vazifedoust, M., van Dam, J. C., Feddes, R. A., & Feizi, M. (2008). Increasing water productivity of irrigated crops under limited water supply at field scale. Agric Water Manag, 95, 89–102.

    Article  Google Scholar 

  • Vázquez, N., Pardo, A., Suso, M. L., & Quemada, M. (2006). Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agricultural, Ecosystems and Environment, 112, 313–323.

    Article  Google Scholar 

  • Wang, X. P., & Huang, G. H. (2008). Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China. Agric Water Manag, 95, 1011–1027.

    Article  Google Scholar 

  • Wang, J. F., Wang, G. X., & Wanyan, H. (2007). Treated wastewater irrigation effect on soil, crop and environment: wastewater recycling in the loess area of China. J Environ Sci, 19, 1093–1099.

    Article  CAS  Google Scholar 

  • Wu, W. Y., Yin, S. Y., Liu, H. L., & Chen, H. H. (2014). Groundwater vulnerability assessment and feasibility mapping under reclaimed water irrigation by a modified DRASTIC model. Water Resource Management, 28, 1219–1234.

    Article  Google Scholar 

  • Xie, T., Liu, X. H., & Sun, T. (2011). The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecol Model, 222, 241–252.

    Article  CAS  Google Scholar 

  • Xue, Y. D., Yang, P. L., Luo, Y. P., Li, Y. K., Ren, S. M., Su, Y. P., et al. (2012). Characteristics and driven factors of nitrous oxide and carbon dioxide emissions in soil irrigated with treated wastewater. Journal of Integrative Agriculture, 11, 1354–1364.

    Article  CAS  Google Scholar 

  • Zavadil, J. (2009). The effect of municipal wastewater irrigation on the yield and quality of vegetables and crops. Soil and Water Research, 4, 91–103.

    CAS  Google Scholar 

  • Zhai, P. M., Zhang, X. B., Wan, H., & Pan, X. H. (2005). Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim, 18, 1096–1108.

    Article  Google Scholar 

  • Zhang, Y., Liu, B. Y., Wang, Z. Q., & Zhu, Q. K. (2008). Evaluation of CLIGEN for storm generation on the semiarid Loess Plateau in China. Catena, 73, 1–9.

    Article  Google Scholar 

  • Zheng, H. X., & Kou, Y. J. (2011). The modes and mechanisms of ecological compensation in water source areas, Beijing, China. Energy Procedia, 13, 4300–4306.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (51279204) and the Public Welfare Project of Ministry of Water Resources of China (201101051). The authors are very grateful to Dr. Jirka Šimůnek from the University of California Riverside for excellent technical assistance and Mr. Tom Milliman from the University of New Hampshire for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiling Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, F., Ren, S., Yang, P. et al. Modeling the Risk of the Salt for Polluting Groundwater Irrigation with Recycled Water and Ground Water Using HYDRUS-1 D. Water Air Soil Pollut 227, 189 (2016). https://doi.org/10.1007/s11270-016-2875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2875-2

Keywords

Navigation