Skip to main content
Log in

Oleophobicity of Chitosan/Micron-alumina-Coated Stainless Steel Mesh for Oil/Water Separation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this research, stainless steel meshes coated with chitosan and micron-alumina were prepared via a dip-coating method. The coated mesh exhibits underwater oleophobic property with low oil adhesion. The influence of different concentrations of chitosan and micron-alumina on underwater oil contact angle of the coated mesh was studied. The separation efficiencies of the coated mesh for different oil–water mixtures were also tested. The results showed that the underwater oil contact angle of the coated mesh was as high as 146° when the concentrations of chitosan and micron-alumina were 0.4 and 0.04 wt%, respectively. The coated mesh can separate different kinds of oil with an efficiency over 90 % in gravity-driven method. Furthermore, the mesh has high recyclability in the application of oil–water separations in both NaCl and weak alkaline solutions. The chitosan and micron-alumina coated mesh has potential applications in oil–water separations.

The chitosan and micron-alumina modified stainless steel meshes show an underwater oil contact angle of 146° and a efficiency over 90 % for gravity-driven oil/water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barthwal, S., & Lim, S. H. (2015). Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness. Applied Surface Science, 328, 296–305.

    Article  CAS  Google Scholar 

  • Chang, S. H., & Chian, C. H. (2013). Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films. Applied Surface Science, 282, 735–740.

    Article  CAS  Google Scholar 

  • Chen, M. D., Jiang, W., Wang, F. H., Shen, P., Ma, P. C., Gu, J. J., Mao, J. Y., & Li, F. S. (2013). Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface. Applied Surface Science, 286, 249–256.

    Article  CAS  Google Scholar 

  • Dong, Y., Li, J., Shi, L., Wang, X. B., Guo, Z. G., & Liu, W. M. (2014). Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chemical Communications, 50, 5586–5589.

    Article  CAS  Google Scholar 

  • Du, C., Wang, J. D., Chen, Z. F., & Chen, D. R. (2014). Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Applied Surface Science, 313, 304–310.

    Article  CAS  Google Scholar 

  • Feng, L., Zhang, Z. Y., Mai, Z. H., Ma, Y. M., Liu, B. Q., Jiang, L., & Zhu, D. B. (2004). A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie, International Edition, 43, 2012–2014.

    Article  CAS  Google Scholar 

  • Gao, R., Liu, Q., Wang, J., Liu, J. Y., Yang, W. L., Gao, Z., & Liu, L. H. (2014). Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture. Applied Surface Science, 289, 417–424.

    Article  CAS  Google Scholar 

  • Jin, C. D., Li, J. P., Han, S. J., Wang, J., & Sun, Q. F. (2014). A durable, superhydrophobic, superoleophobic andcorrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface. Applied Surface Science, 320, 322–327.

    Article  CAS  Google Scholar 

  • Kerr, R. A., Kintisch, E., Schenkman, L., & Stokstad, E. (2010). Five questions on the spill. Science, 328, 962–963.

    Article  Google Scholar 

  • Lu, F., Chen, Y. N., Liu, N., Cao, Y. Z., Xu, L. X., Wei, Y., & Feng, L. (2014). A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 4, 32544–32548.

    Article  CAS  Google Scholar 

  • McCloskey, B. D., Ju, H., & Freeman, B. D. (2010). Composite membranes based on a selective chitosan-poly( ethylene glycol ) hybrid layer: synthesis, characterization, and performance in oil–water purification. Industrial and Engineering Chemistry Research, 49, 366–373.

    Article  CAS  Google Scholar 

  • Motlagh, N. V., Birjandi, F. C., Sargolzaei, J., & Shahtahmassebi, N. (2013). Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method. Applied Surface Science, 283, 636–647.

    Article  Google Scholar 

  • Podust, T. V., Kulik, T. V., Palyanytsya, B. B., Gun’ko, V. M., Tóth, A., & Mikhalovska, L. (2014). Chitosan-nanosilica hybrid materials: preparation and properties. Applied Surface Science, 320, 563–569.

    Article  CAS  Google Scholar 

  • Wang, Q. J., Cui, Z., Xiao, Y., & Chen, Q. M. (2007). Stable highly hydrophobic and oleophilic meshes for oil–water separation. Applied Surface Science, 253, 9054–9060.

    Article  CAS  Google Scholar 

  • Wang, L. F., Yang, S. Y., Wang, J., Wang, C. F., & Chen, L. (2011). Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route. Materials Letters, 65, 869–872.

    Article  CAS  Google Scholar 

  • Wu, J., Chen, J., Qasim, K., Xia, J., Lei, W., & Wang, B. P. (2012). A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. Journal of Chemical Technology and Biotechnology, 87, 427–430.

    Article  CAS  Google Scholar 

  • Wu, D. X., Wu, W. J., Yu, Z. Y., Zhang, C. Y., & Zhu, H. T. (2014a). Facile preparation and characterization of modified polyurethane sponge for oil absorption. Industrial and Engineering Chemistry Research, 53, 20139–20144.

    Article  CAS  Google Scholar 

  • Wu, D. X., Yu, Z. Y., Wu, W. J., Fang, L. L., & Zhu, H. T. (2014b). Continuous oil–water separation with surface modified sponge for cleanup of oil spills. RSC Advances, 4, 53514–53519.

    Article  CAS  Google Scholar 

  • Wu, L., Zhang, J. P., Li, B. C., & Wang, A. Q. (2014c). Mechanical-and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. Journal of Colloid and Interface Science, 413, 112–117.

    Article  CAS  Google Scholar 

  • Xue, Z. X., Wang, S. T., Lin, L., Chen, L., Liu, M. J., Feng, L., & Jiang, L. (2011). A noval superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 23, 4270–4273.

    Article  CAS  Google Scholar 

  • Xue, C. H., Ji, P. T., Zhang, P., Li, Y. R., & Jia, S. T. (2013). Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation. Applied Surface Science, 284, 464–471.

    Article  CAS  Google Scholar 

  • Yang, J., Song, H. J., Tang, H., Ji, H. Y., & Li, C. S. (2013). Plasma-driven tunable liquid adhesion of superoleophobic aluminum surfaces. Applied Surface Science, 280, 940–944.

    Article  CAS  Google Scholar 

  • Zeng, J. W., & Guo, Z. G. (2014). Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 283–288.

    Article  CAS  Google Scholar 

  • Zhang, X. W., Zhang, T., Ng, J. W., & Sun, D. D. (2009). High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment. Advanced Functional Materials, 19, 3731–3736.

    Article  CAS  Google Scholar 

  • Zhang, S. Y., Lu, F., Tao, L., Liu, N., Gao, C. R., Feng, L., & Wei, Y. (2013). Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad ph range and hyper-saline environments. ACS Applied Materials & Interfaces, 5, 11971–11976.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51172117, 51472134), the Natural Science Foundation of Shandong Province (ZR2010EM035, ZR2013EMM003), and the Foundation of Qingdao Science and Technology (13-1-4-148-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Duan, J., Yu, Z. et al. Oleophobicity of Chitosan/Micron-alumina-Coated Stainless Steel Mesh for Oil/Water Separation. Water Air Soil Pollut 227, 163 (2016). https://doi.org/10.1007/s11270-016-2861-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2861-8

Keywords

Navigation