Skip to main content
Log in

Topographic Influence on Plant Nitrogen and Phosphorus Stoichiometry in a Temperate Forested Watershed

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Plant stoichiometry has been used to diagnose phosphorus (P) limitation caused by increased atmospheric nitrogen (N) deposition. Spatial variability of N/P stoichiometry within a forested watershed has not yet been evaluated. This study conducted synoptic sampling of leaf matter in 27 plots within a temperate forested watershed on low P availability rock (serpentine bedrock) with a moderately high atmospheric N deposition (16 kg N ha−1 year−1) to assess the effects of spatial topographic variation on N/P stoichiometry. Leaf N and P concentrations and N/P ratios of Japanese cypress were assessed, and their spatial variations were evaluated across a catchment. Average leaf P concentration was low (0.66 ± 0.16 mg g−1) across the sites, while leaf N concentration was high (13.0 ± 1.5 mg g−1); subsequently, N/P ratios were high (21 ± 5). In addition, the aboveground biomass growth of Japanese cypress positively correlated with litter P, implying the P limitation of Japanese cypress at the study site. Leaf P concentrations responded to the index of convexity (IC) values more than those of N. Subsequently, the N/P ratio correlated with IC, suggesting that N/P ratios are susceptible to topographic features. This could be partly caused by smaller spatial variability of N availability compared with P, owing to increased atmospheric N deposition. Thus, topography should be taken into consideration when diagnosing P limitation caused by N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

    Article  Google Scholar 

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375–389.

    Article  Google Scholar 

  • Blanes, M. C., Vinegla, B., Merino, J., & Carreira, J. A. (2013). Nutritional status of Abies pinsapo forests along a nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia, 171, 797–808.

    Article  Google Scholar 

  • Bragazza, L., Tahvanainen, T., Kutnar, L., Rydin, H., Limpens, J., Hajek, M., Grosvernier, P., Hajek, T., Hajkova, P., Hansen, I., Iacumin, P., & Gerdol, R. (2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609–616.

    Article  Google Scholar 

  • Braun, S., Thomas, V. F. D., Quiring, R., & Fluckiger, W. (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043–2052.

    Article  CAS  Google Scholar 

  • Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57, 235–239.

    Article  Google Scholar 

  • Casson, N. J., Eimers, M. C., & Watmough, S. A. (2012). An assessment of the nutrient status of sugar maple in Ontario: indications of phosphorus limitation. Environmental Monitoring and Assessment, 184, 5917–5927.

    Article  CAS  Google Scholar 

  • Chiwa, M., Maruno, R., Ide, J., Miyano, T., Higashi, N., & Otsuki, K. (2010). Role of stormflow in reducing N retention in a suburban forested watershed, western Japan. Journal of Geophysical Research-Biogeosciences, 115, G02004.

    Article  Google Scholar 

  • Chiwa, M., Onikura, N., Ide, J., & Kume, A. (2012). Impact of N-saturated upland forests on downstream N pollution in the Tatara River Basin, Japan. Ecosystems, 15, 230–241.

    Article  CAS  Google Scholar 

  • Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.

    Article  Google Scholar 

  • Enoki, T., & Kawaguchi, H. (1999). Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research, 14, 1–8.

    Article  Google Scholar 

  • Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1996). Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecological Research, 11, 299–309.

    Article  Google Scholar 

  • Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1997). Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecological Research, 12, 191–199.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., Lemly, A. D., McNulty, S. G., Ryan, D. E., & Stottlemyer, R. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706–733.

    Article  Google Scholar 

  • Galloway, J. N. (2005). The global nitrogen cycle. In W. H. Schlesinger (Ed.), Biogeochemistry (Treatise on geochemistry, Vol. 8, pp. 557–583). Oxford: Elsevier.

    Google Scholar 

  • Gradowski, T., & Thomas, S. C. (2006). Phosphorus limitation of sugar maple growth in central Ontario. Forest Ecology Management, 226, 104–109.

    Article  Google Scholar 

  • Gress, S. E., Nichols, T. D., Northcraft, C. C., & Peterjohn, W. T. (2007). Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology, 88, 119–130.

    Article  Google Scholar 

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests - effects of air pollution and forest management. Environmental Review, 14, 1–57.

    Article  CAS  Google Scholar 

  • Gusewell, S. (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243–266.

    Article  Google Scholar 

  • Gusewell, S., & Koerselman, M. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics, 5, 37–61.

    Article  Google Scholar 

  • Kayama, M., Makoto, K., Nomura, M., Satoh, F., & Koike, T. (2009). Nutrient dynamics and carbon partitioning in larch seedlings (Larix kaempferi) regenerated on serpentine soil in northern Japan. Landscape Ecological Engineering, 5, 125–135.

    Article  Google Scholar 

  • Kitayama, K., Majalap-Lee, N., & Aiba, S. (2000). Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia, 123, 342–349.

    Article  Google Scholar 

  • Kobe, R. K., Lepczyk, C. A., & Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780–2792.

  • Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441–1450.

    Article  Google Scholar 

  • Lovett, G. M., Traynor, M. M., Pouyat, R. V., Carreiro, M. M., Zhu, W. X., & Baxter, J. W. (2000). Atmospheric deposition to oak forests along an urban–rural gradient. Environmental Science and Technology, 34, 4294–4300.

    Article  CAS  Google Scholar 

  • Mage, S., & Porder, S. (2013). Parent material and topography determine soil phosphorus Status in the Luquillo Mountains of Puerto Rico. Ecosystems, 16, 284–294.

    Article  CAS  Google Scholar 

  • McGroddy, M. E., Daufresne, T., & Hedin, L. O. (2004). Scaling of C : N : P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology, 85, 2390–2401.

    Article  Google Scholar 

  • Ohrui, K., & Mitchell, M. J. (1997). Nitrogen saturation in Japanese forested watersheds. Ecological Applications, 7, 391–401.

    Article  Google Scholar 

  • Richardson, S. J., Peltzer, D. A., Allen, R. B., & McGlone, M. S. (2005). Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology, 86, 20–25.

  • Saito, H. (1982). Primary production over 10 years in evergreen coniferous (Chamaecyparis obtuse Sieb. et Zucc.) plantation in Mt. Watanuki-yama, Shiga. Japanese Journal of Ecology, 32, 87–98 (in Japanese with English summary).

    Google Scholar 

  • Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10–22.

  • Tateno, R., & Takeda, H. (2010). Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability. Oecologia, 163, 793–804.

    Article  Google Scholar 

  • Tessier, J. T., & Raynal, D. J. (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523–534.

    Article  CAS  Google Scholar 

  • Ueda, S., & Tsutsumi, T. (1979). The amount of nutrient in Chamaecyparis –Influences of fertilization and elements of litterfall obtusa stands and site condition–. Bulletin of the Kyoto University Forests, 51, 84–95 (in Japanese with English summary).

  • Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., & Jackson, R. B. (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205–220.

  • Vitousek, P. (1982). Nutrient cycling and nutrient use efficiency. American Naturalist, 119, 553–572.

  • Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137–167.

  • Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea -How can it occur. Biogeochemistry, 13, 87–115.

    Article  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • Watanabe, M., Ryu, K., Kita, K., Takagi, K., & Koike, T. (2012). Effect of nitrogen load on growth and photosynthesis of seedlings of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil. Environmental and Experimental Botany, 83, 73–81.

    Article  CAS  Google Scholar 

  • Yamakura, T., Kanzaki, M., Itoh, A., Ohkubo, T., Ogino, K., Chai, E. O. K., Lee, H. S., & Ahton, P. S. (1995). Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41–56.

    Article  Google Scholar 

  • Zhang, Z., Fukushima, T., Onda, Y., Mizugaki, S., Gomi, T., Kosugi, K., Hiramatsu, S., Kitahara, H., Kuraji, K., Terajima, T., Matsushige, K., & Tao, F. (2008). Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - Its association with rainfall and watershed features. Science of the Total Environment, 390, 215–226.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at Shiiba Research Forest and Kasuya Research Forest, Kyushu University Forest for litter and stream water collections. We thank the Ministry of Education, Culture, Sports, Science, and Technology, Japan, for Grants-in-Aid for Scientific Research (23580208, 26450198). This study was also financially supported by Interdisciplinary Programs in Education and Projects in Research Development (P&P Program), Kyushu University (2009, B-4, 20168). The cost of publication was supported in part by a research grant for Young Investigators of the Faculty of Agriculture, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Chiwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiwa, M., Ikezaki, S., Katayama, A. et al. Topographic Influence on Plant Nitrogen and Phosphorus Stoichiometry in a Temperate Forested Watershed. Water Air Soil Pollut 227, 6 (2016). https://doi.org/10.1007/s11270-015-2701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2701-2

Keywords

Navigation