Skip to main content
Log in

Fate and Risk Assessment of Arsenic Compounds in Soil Amended with Poultry Litter Under Aerobic and Anaerobic Circumstances

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Poultry litter and bedding materials generated from laying chicken farm often contain high levels of arsenic when roxarsone is included in feed to combat disease and improve egg production. This study was conducted to determine the fate and ecological risk of arsenic species in poultry litter which applied to agricultural field. Three poultry litter application rates (0, 10, 60 % dry weight) were used to amend soil samples under anaerobic and aerobic circumstances, respectively, incubated at 30 % moisture content for 110 days. Experiment indicated that under anaerobic circumstance, As(V) and As(III) decreased in treatments applied 60 and 10 % rates within initial 7 days, subsequently methylated arsenic displayed increasing, suggesting biotic activity transformed inorganoarsenical to methylated arsenic species. In contrast, As(V) dropped in the first 7 days but increased thereafter under aerobic circumstances, with methylated arsenic increasing, implying abiotc and biotic activities enhanced arsenic speciation. Based on different arsenic species, we evaluated their ecological risk in poultry litter respectively. It was found that ecological risks under anaerobic circumstance were higher than under aerobic circumstance of the same poultry litter rates, and higher poultry litter rates applied to soil would bring about higher ecological risk. We suggest that poultry litter should be disposed at low rate (approximately 10 %) and applied to soil surface to create aerobic circumstance for the initial 2 months time, but should be buried into a deeper depth thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeleye, Y., Andersen, M., Clewell, R., Davies, M., Dent, M., Edwards, S., et al. (2015). Implementing toxicity testing in the 21st century (TT21C): making safety decisions using toxicity pathways, and progress in a prototype risk assessment. Toxicology, 332(5), 102–111.

    Article  CAS  Google Scholar 

  • Balasoiu, C. F., Zagury, G. J., & Deschênes, L. (2001). Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition. Science of the Total Environment, 280, 239–255.

    Article  CAS  Google Scholar 

  • Braman, R. S. (1975). Arsenic in the environment. In ACS Symposium Series .(157-162) Florida: University of South Florida.

  • Brown, B. L., Slaughter, A. D., & Schreiber, M. E. (2005). Controls on roxarsone transport in agricultural watersheds. Applied Geochemistry, 20(1), 123–133.

    Article  Google Scholar 

  • Cao, X., Ma, L. Q., & Shiralipour, A. (2003). Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution, 126(2), 157–167.

    Article  CAS  Google Scholar 

  • Cortinas, I., Field, J. A., Kopplin, M., Garbarino, J. R., Gandolfi, A. J., & Sierra-Alvarez, R. (2006). Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environmental Science & Technology, 40(9), 2951–2957.

    Article  CAS  Google Scholar 

  • Cullen, W. R., Li, H., Pergantis, S. A., Eigendorf, G. K., & Mosi, A. A. (1995). Arsenic biomethylation by the microorganism apiotrichum humicola in the presence of l-methionine-methyl-d3. Applied Organometallic Chemistry, 9(7), 507–515.

    Article  CAS  Google Scholar 

  • Fisher, D. J., Yonkos, L. T., & Staver, K. W. (2015). Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environmental Science & Technology, 49(4), 1999–2012.

    Article  CAS  Google Scholar 

  • Garbarino, J. R., Bednar, A. J., Rutherford, D. W., Beyer, R. S., & Wershaw, R. L. (2003). Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environmental Science & Technology, 37(8), 1509–1514.

    Article  CAS  Google Scholar 

  • Gupta, G., & Kelly, P. (1990). Toxicity (EC50) comparisons of some animal wastes. Water, Air, & Soil Pollution, 53(1-2), 113–117.

    Article  Google Scholar 

  • Guzmán-Fierro, V. G., Moraga, R., León, C. G., Campos, V. L., Smith, C., & Mondaca, M. A. (2015). Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone. International Journal of Environmental Science and Technology, 12(4), 1353–1362.

    Article  Google Scholar 

  • Han, F. X., Kingery, W. L., Selim, H. M., Gerard, P. D., Cox, M. S., & Oldham, J. L. (2004). Arsenic solubility and distribution in poultry waste and long-term amended soil. Science of the Total Environment, 320, 51–61.

    Article  CAS  Google Scholar 

  • Jackson, B. P., Seaman, J. C., & Bertsch, P. M. (2006). Fate of arsenic compounds in poultry litter upon land application. Chemosphere, 65(11), 2028–2034.

    Article  CAS  Google Scholar 

  • Kruger, M. C., Bertin, P. N., Heipieper, H. J., & Arsène-Ploetze, F. (2013). Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Applied Microbiology and Biotechnology, 97(9), 3827–3841.

    Article  CAS  Google Scholar 

  • Kuehnelt, D., & Goessler, W. (2003). Organoarsenic compounds in the terrestrial environment. In Organometallic Compounds in the Environment (223-275) New Jersey: John Wiley & Sons, Ltd.

  • Lu, Y., Yin, W., Huang, L., Zhang, G., & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Environmental Geochemistry and Health, 33(2), 93–102.

    Article  CAS  Google Scholar 

  • Mafla, S., Moraga, R., León, C. G., Guzmán-Fierro, V. G., Yaňez, J., Smith, C. T., et al. (2015). Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact. World Journal of Microbiology and Biotechnology, 31(8), 1267–1277.

    Article  CAS  Google Scholar 

  • Makris, K. C., Salazar, J., Quazi, S., Andra, S. S., Sarkar, D., Bach, S. B. H., et al. (2008). Controlling the fate of roxarsone and inorganic arsenic in poultry litter. Journal of Environmental Quality, 37(3), 963–971.

    Article  CAS  Google Scholar 

  • Mangalgiri, K. P., Adak, A., & Blaney, L. (2015). Organoarsenicals in poultry litter: detection, fate, and toxicity. Environment International, 75, 68–80.

    Article  Google Scholar 

  • Meng, D., Wei, D., Tan, Z., Lin, A., & Du, Y. (2015). The potential risk assessment for different arsenic species in the aquatic environment. Journal of Environmental Sciences, 27, 1–8.

    Article  Google Scholar 

  • Nachman, K. E., & Silbergeld, E. K. (2005). Arsenic: a roadblock to potential animal waste management solutions. Environmental Health Perspectives, 113(9), 1123–1124.

    Article  CAS  Google Scholar 

  • Nachman, K. E., Mihalic, J. N., Burke, T. A., & Geyh, A. S. (2008). Comparison of arsenic content in pelletized poultry house waste and biosolids fertilizer. Chemosphere, 71(3), 500–506.

    Article  CAS  Google Scholar 

  • Oyewumi, O., & Schreiber, M. E. (2012). Release of arsenic and other trace elements from poultry litter: insights from a field experiment on the Delmarva Peninsula, Delaware. Applied Geochemistry, 27(10), 1979–1990.

    Article  CAS  Google Scholar 

  • Sah, S., Vandenberg, A., & Smits, J. (2013). Treating chronic arsenic toxicity with high selenium lentil diets. Toxicology and Applied Pharmacology, 272(1), 256–262.

    Article  CAS  Google Scholar 

  • Sánchez-Rodas, D., Gómez-Ariza, J. L., Giráldez, I., Velasco, A., & Morales, E. (2005). Arsenic speciation in river and estuarine waters from southwest Spain. Science of the Total Environment, 345(1-3), 207–217.

    Article  Google Scholar 

  • Shi, L., Wang, W., Yuan, S. J., & Hu, Z. H. (2014). Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environmental Science & Technology, 48(14), 7951–7958.

    Article  CAS  Google Scholar 

  • Sierra-Alvarez, R., Yenal, U., Field, J. A., Kopplin, M., Gandolfi, A. J., & Garbarino, J. R. (2006). Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid. Journal of Agricultural and Food Chemistry, 54(11), 3959–3966.

    Article  CAS  Google Scholar 

  • Smith, J. V. S., Jankowski, J., & Sammut, J. (2003). Vertical distribution of As(III) and As(V) in a coastal sandy aquifer: factors controlling the concentration and speciation of arsenic in the Stuarts point groundwater system, northern New South Wales, Australia. Applied Geochemistry, 18(9), 1479–1496.

    Article  CAS  Google Scholar 

  • Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M., & Hasegawa, H. (1997). Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environmental Science & Technology, 31(10), 2712–2720.

    Article  CAS  Google Scholar 

  • Stollenwerk, K. G. (2003). Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. Arsenic in groundwater (pp. 67–100). New York: Springer.

    Google Scholar 

  • Sun, C., Chunjuan, B. I., Chen, Z., Wang, D., Zhang, C., Sun, Y., et al. (2010). Assessment on environmental quality of heavy metals in agricultural soils of Chongming Island, Shanghai City. Journal of Geographical Sciences, 20(1), 135–147.

    Article  Google Scholar 

  • Usman, A. R. A., Almaroai, Y. A., Ahmad, M., Vithanage, M., & Yong, S. O. (2013). Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. Journal of Hazardous Materials, 262(22), 1022–1030.

    Article  CAS  Google Scholar 

  • Yao, L., Li, G., Zhi, D., He, Z., Zhou, C., & Yang, B. (2009). Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant and Soil, 316(1-2), 117–124.

    Article  CAS  Google Scholar 

  • Zhang, F. F., Wei, W., Yuan, S. J., & Hu, Z. H. (2014). Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials, 279(279C), 562–568.

    Article  CAS  Google Scholar 

  • Zhao, J., Ying, G., & Wei, D. (2011). Ecological risk assessment methodology of toxic pollutants in surface water and sediments: a review. Asian Journal of Ecotoxicology, 6(6), 577–588.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundation of China (No. 21177087) and the National High Technology Research and Development Program of China (2012AA101405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Cheng.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Han, D., Cheng, J. et al. Fate and Risk Assessment of Arsenic Compounds in Soil Amended with Poultry Litter Under Aerobic and Anaerobic Circumstances. Water Air Soil Pollut 226, 390 (2015). https://doi.org/10.1007/s11270-015-2653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2653-6

Keywords

Navigation