Skip to main content

Advertisement

Log in

Petrochemical Wastewater Treatment by Photo-Fenton Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent decades, the rise in the generation of extremely toxic and refractory wastewaters, as petroleum refinery plant effluents, is demanding increasingly efficient treatment technologies, among which photo-Fenton advanced oxidation processes are highlighted due to their rapid and effective petroleum-derived pollutant degradation. However, these systems are costly for their application at industrial scale, especially due to the associated electric energy and reagent costs. Several strategies have been adapted for overcoming these limitations, including the use of ferricarboxylate complexes or heterogeneous iron catalysts, the automated dosing of the oxidant, and even the combination of different AOPs, such as photo-electro-Fenton or sono-photo-Fenton hybrid methods. Nonetheless, the reduction of energy costs is not successfully accomplished. In this sense, further studies are required for minimizing operational costs by taking profit of solar light and coupling photo-Fenton-derived processes to biological treatments so industries can afford to implement these degradation systems and thus meet environmental legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2, 557–572.

    Article  CAS  Google Scholar 

  • Barreca, S., Velez, J. J., Pace, A., Orecchio, S., & Pulgarin, C. (2014). Neutral solar photo-Fenton degradation of 4-nitrophenol on iron-enriched hybrid montmorillonite-alginate beads (Fe-MABs). Journal of Photochemistry and Photobiology A: Chemistry, 282, 33–40.

    Article  CAS  Google Scholar 

  • Batista, A. P. S., & Nogueira, R. F. P. (2012). Parameters affecting sulfonamide photo-Fenton degradation—iron complexation and substituent group. Journal of Photochemistry and Photobiology A: Chemistry, 232(15), 8–13.

  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    Article  CAS  Google Scholar 

  • Carra, I., Casas, J. L., Santos-Juanes, L., Malato, S., & Sánchez, J. A. (2013a). Iron dosage as a strategy to operate the photo-Fenton process at initial neutral pH. Chemical Engineering Journal, 224, 67–74.

    Article  CAS  Google Scholar 

  • Carra, I., Ortega-Gómez, E., Santos-Juanes, L., Casas, J. L., & Sánchez, J. A. (2013b). Cost analysis of different hydrogen peroxide supply strategies in the solar photo-Fenton process. Chemical Engineering Journal, 224, 75–81.

    Article  CAS  Google Scholar 

  • Coelho, A., Castro, A., Dezotti, M., & Sant'Anna, G. L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, 137(1), 178–184.

    Article  CAS  Google Scholar 

  • Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769–776.

    Article  CAS  Google Scholar 

  • Da Rocha, O. R. S., Dantas, R. F., Bezerra, M. M. M., Lima, M. M., & Lins, V. (2013). Solar photo-Fenton treatment of petroleum extraction wastewater. Desalination and Water Treatment, 51, 5785–5791.

    Article  Google Scholar 

  • Da Silva, S. S., Chiavone-Filho, O., De Barros, E. L., & Nascimento, C. A. (2012). Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene. Journal of Hazardous Materials, 199–200, 151–157.

    Article  Google Scholar 

  • De Laat, J., Truong, G., & Legube, B. (2004). A comparative study of the effects of chloride, sulfate and nitrate ion on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere, 55, 715–723.

    Article  Google Scholar 

  • Dincer, A. R., Karakaya, N., Gunes, E., & Gunesi, A. Y. (2008). Removal of COD from oil recovery industry wastewater by the advanced oxidation processes (AOP) based on H2O2. Global NEST Journal, 10(1), 31–38.

  • Dopar, M., Kušić, H., & Koprivanac, N. (2011). Treatment of simulated industrial wastewater by photo-Fenton process. Part I: the optimization of process parameters using design of experiments (DOE). Chemical Engineering Journal, 173(2), 267–279.

    Article  CAS  Google Scholar 

  • Durr-E-Shahwar, Yasar, A., & Yousaf, S. (2012). Solar assisted photo Fenton for cost effective degradation of textile effluents in comparison to AOPs. Global NEST Journal, 14(4), 477–486.

    Google Scholar 

  • ElShafei, G. M. S., Yehia, F. Z., Dimitry, O. I. H., Badawi, A. M., & Eshaq, G. (2014). Ultrasonic assisted-Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxides of Fe and Cu. Ultrasonics Sonochemistry, 21, 1358–1365.

    Article  CAS  Google Scholar 

  • Farré, M. J., Doménech, X., & Peral, J. (2007). Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid. Journal of Hazardous Materials, 147, 167–174.

    Article  Google Scholar 

  • Feng, H., & Le-Cheng, L. (2004). Degradation kinetics and mechanisms of phenol in photo-Fenton process. Journal of Zhejiang University Science, 5(2), 198–205.

    Article  Google Scholar 

  • Fukushima, M., & Tatsumi, K. (2001). Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron (II), humic acid, and hydrogen peroxide. Environmental Science & Technology, 35, 1771–1778.

    Article  CAS  Google Scholar 

  • Galvão, S., Mota, A., Silva, D., Moraes, J., Nascimento, C., & Chiavone-Filho, O. (2006). Application of the photo-Fenton process to the treatment of wastewaters contaminated with diesel. Science of The Total Environment, 367(1), 42–49.

    Article  Google Scholar 

  • Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352.

    Article  CAS  Google Scholar 

  • Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environmental Science & Technology, 44, 6822–6828.

    Article  CAS  Google Scholar 

  • Guimarães, J. R., Gasparini, M. C., Maniero, M. G., & Mendes, C. G. N. (2012). Stripped sour water treatment by advanced oxidation processes. Journal of the Brazilian Chemical Society, 23(9), 1680–1687.

    Article  Google Scholar 

  • Hasan, D. B., Daud, W. M. A. W., & Aziz, A. R. A. (2011). Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89, 95–105.

    Article  Google Scholar 

  • Hasan, D. B., Aziz, A. R. A., & Daud, W. M. A. W. (2012). Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chemical Engineering Research and Design, 90, 298–307.

    Article  CAS  Google Scholar 

  • Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. Journal of Environmental Management, 92, 2304–2347.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Huang, Y. J., Tsai, H. C., & Chen, H. T. (2010). Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 41, 699–704.

    Article  CAS  Google Scholar 

  • Jeong, J., & Yoon, J. (2005). pH effect on OH radical production in photo/ferrioxalate system. Water Reseach, 39, 2893–2900.

    Article  CAS  Google Scholar 

  • Jia, H., Zhao, J., Fan, X., Dilimulati, K., & Wang, C. (2012). Photodegradation of phenanthrene on cation-modified clays under visible light. Applied Catalysis B: Environmental, 123–124, 43–51.

    Article  Google Scholar 

  • Katsumata, H., Sada, M., Kaneco, S., Suzuki, T., Ohta, K., & Yobiko, Y. (2008). Humic acid degradation in aqueous solution by the photo-Fenton process. Chemical Engineering Journal, 137, 225–230.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235–1243.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2005). Degradation of nitrophenols by Fenton and photo-Fenton processes. Journal of Photochemistry and Photobiology A: Chemistry, 170, 83–95.

    Article  CAS  Google Scholar 

  • Khamaruddin, P. F., Bustam, M. A., & Omar, A. A. (2011). Using Fenton’s reagents for the degradation of diisopropanolamine: effect of temperature and pH. Singapore: In International Conference on Environment and Industrial Innovation.

    Google Scholar 

  • Khan, E., Wironjanagud, W., & Sermsai, N. (2009). Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. Journal of Hazardous Materials, 161, 1024–1034.

    Article  CAS  Google Scholar 

  • Krutzler, T., & Bauer, R. (1999). Optimization of a photo-Fenton prototype reactor. Chemosphere, 38(11), 2517–2532.

    Article  CAS  Google Scholar 

  • Kušić, H., Koprivanac, N., Božić, A. L., & Selanec, I. (2006). Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study. Journal of Hazardous Materials, 136(3), 632–644.

    Article  Google Scholar 

  • Levchuk, I., Bhatnagar, A., & Sillanpää, M. (2014). Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Science of The Total Environment, 476–477, 415–433.

    Article  Google Scholar 

  • Liao, C. H., & Gurol, M. D. (1995). Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environment Science & Technology, 29, 3007–3014.

    Article  CAS  Google Scholar 

  • Liao, C. H., Kang, S. F., & Wu, F. A. (2001). Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 44(5), 1193–1200.

    Article  CAS  Google Scholar 

  • Linley, E., Denyer, S. P., McDonnell, G., Simons, C., & Maillard, J. Y. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596.

    Article  CAS  Google Scholar 

  • Litter, M. I., & Quici, N. (2010). Photochemical advanced oxidation processes for water and wastewater treatment. Recent Patents on Engineering, 4, 217–241.

    Article  CAS  Google Scholar 

  • Maciel, R., Sant'Anna, G. L., & Dezotti, M. (2004). Phenol removal from high salinity effluents using Fenton's reagent and photo-Fenton reactions. Chemosphere, 57(7), 711–719.

    Article  CAS  Google Scholar 

  • Mack, J., & Bolton, J. R. (1999). Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 128(1–3), 1–13.

    Article  CAS  Google Scholar 

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147(1), 1–59.

    Article  CAS  Google Scholar 

  • Mandal, T., Maity, S., Dasgupta, D., & Datta, S. (2010). Advanced oxidation process and biotreatment: their roles in combined industrial wastewater treatment. Desalination, 250(1), 87–94.

    Article  CAS  Google Scholar 

  • Manivasagan, V., Basha, C. A., Kannadasan, T., & Saranya, K. (2012). Degradation of parachlorophenol by electro-Fenton and photo-Fenton process using batch recirculation reactor. Portugaliae Electrochimica Acta, 30(6), 385–393.

    Article  CAS  Google Scholar 

  • Mascolo, G., Ciannarella, R., Balest, L., & Lopez, A. (2008). Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. Journal of Hazardous Materials, 152, 1138–1145.

    Article  CAS  Google Scholar 

  • Molkenthin, M., Olmez-Hanci, T., Jekel, M. R., & Arslan-Alaton, I. (2013). Photo-Fenton-like treatment of BPA: effect of UV light source and water matrix on toxicity and transformation products. Water Research, 47(14), 5052–5064.

    Article  CAS  Google Scholar 

  • Neamţu, M., Grandjean, D., Sienkiewicz, A., Le Faucheur, S., Slaveykova, V., Velez, J. J., et al. (2014). Degradation of eight relevant micropollutants in different water matrices by neutral photo-Fenton process under UV254 and simulated solar light irradiation—a comparative study. Applied Catalysis B: Environmental, 158–159, 30–37.

    Article  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50.

    Article  CAS  Google Scholar 

  • Nogueira, R. F. P., Silva, M. R. A., & Trovó, A. G. (2005). Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compounds. Solar Energy, 79, 384–392.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of The Total Environment, 409(20), 4141–4166.

    Article  CAS  Google Scholar 

  • Orozco, S. L., Bandala, E. R., Arancibia-Bulnes, C. A., Serrano, B., Suárez-Parra, R., & Hernández-Pérez, I. (2008). Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. Journal of Photochemistry and Photobiology A: Chemistry, 198, 144–149.

    Article  CAS  Google Scholar 

  • Ortega-Gómez, E., Moreno, J. C., Álvarez, J. D., Casas, J. L., Santos-Juanes, L., & Sánchez, J. A. (2012). Automatic dosage of hydrogen peroxide in solar photo-Fenton plants: development of a control strategy for efficiency enhancement. Journal of Hazardous Materials, 237–238, 223–230.

    Article  Google Scholar 

  • Papanikolaou, G., & Pantopoulos, K. (2005). Iron metabolism and toxicity. Toxicology and Applied Pharmacology, 202(2), 199–211.

    Article  CAS  Google Scholar 

  • Pereira, J. H. O. S., Queirós, D. B., Reis, A. C., Nunes, O. C., Borges, M. T., Boaventura, R. A. R., et al. (2014). Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: application to oxytetracycline degradation. Chemical Engineering Journal, 253, 217–228.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84.

    Article  CAS  Google Scholar 

  • Pimentel, M., Oturan, N., Dezotti, M., & Oturan, M. A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Applied Catalysis B: Environmental, 83, 140–149.

    Article  CAS  Google Scholar 

  • Pouran, S. R., Aziz, A. R. A., & Daud, W. M. A. W. (2015). Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. Journal of Industrial and Engineering Chemistry, 21, 53–69.

    Article  Google Scholar 

  • Prosen, H., & Zupancic-Kralj, L. (2005). Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environmental Pollution, 133, 517–529.

    Article  CAS  Google Scholar 

  • Rafin, C., Veignie, E., Fayeulle, A., & Surpateanu, G. (2009). Benzo(a)pyrene degradation using simultaneously combined chemical oxidation, biotreatment with Fusarium solani and cyclodextrins. Bioresource Technology, 100, 3157–3160.

    Article  CAS  Google Scholar 

  • Rodrigues, C. S. D., Madeira, L. M., & Boaventura, R. A. R. (2013). Optimization and economic analysis of textile wastewater treatment by photo-fenton process under artificial and simulated solar radiation. Industrial & Engineering Chemistry Research, 52, 13313–13324.

    Article  CAS  Google Scholar 

  • Rubio Clemente, A., Chica Arrieta, E. L., & Peñuela Mesa, G. A. (2013). Wastewater treatment processes for the removal of emerging organic pollutants. Revista Ambiente & Água-An Interdisciplinary Journal of Applied Science, 8(3), 93–103.

  • Rubio, D., Nebot, E., Casanueva, J. F., & Pulgarin, C. (2013). Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater. Water Research, 47, 6367–6379.

    Article  CAS  Google Scholar 

  • Rubio-Clemente, A., Torres-Palma, R. A., & Peñuela, G. A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Science of The Total Environment, 458, 201–225.

    Article  Google Scholar 

  • Sánchez, J. A., Román, I. M., Carra, I., Cabrera, A., Casas, J. L., & Malato, S. (2013). Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. Journal of Hazardous Materials, 244–245, 195–203.

    Article  Google Scholar 

  • Segura, Y., Molina, R., Martínez, F., & Melero, J. A. (2009). Integrated heterogeneous sono-photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrasonics Sonochemistry, 16, 417–424.

    Article  CAS  Google Scholar 

  • Siedlecka, E. M., Więckowska, A., & Stepnowski, P. (2007). Influence of inorganic ions on MTBE degradation by Fenton’s reagent. Journal of Hazardous Materials, 147, 497–502.

    Article  CAS  Google Scholar 

  • Simunovic, M., Kušić, H., Koprivanac, N., & Bozic, A. (2011). Treatment of simulated industrial wastewater by photo-Fenton process: Part II. The development of mechanistic model. Chemical Engineering Journal, 173(2), 280–289.

    Article  CAS  Google Scholar 

  • Southworth, B. A., & Voelker, B. M. (2003). Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environmental Science & Technology, 37, 1130–1136.

    Article  CAS  Google Scholar 

  • Spuhler, D., Rengifo-Herrera, J. A., & Pulgarin, C. (2010). The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Applied Catalysis B: Environmental, 96(1–2), 126–141.

    Article  CAS  Google Scholar 

  • Sun, J. H., Sun, S. P., Fan, M. H., Guo, H. Q., Lee, Y. F., & Sun, R. X. (2008). Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process. Journal of Hazardous Materials, 153(1–2), 187–193.

    Article  CAS  Google Scholar 

  • Tiburtius, E. R. L., & Peralta-Zamora, P. (2005). Degradation of BTXs by advanced oxidative processes. Química Nova, 28(1), 61–64.

    Article  CAS  Google Scholar 

  • Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2005). Treatment of gasoline-contaminated waters by advanced oxidation processes. Journal of Hazardous Materials, 126(1–3), 86–90.

    Article  CAS  Google Scholar 

  • Tony, M. A., Purcell, P. J., & Zhao, Y. Q. (2012). Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(3), 435–440.

    Article  CAS  Google Scholar 

  • Vermilyea, A. W., & Voelker, B. M. (2009). Photo-Fenton reaction at near neutral pH. Environmental Science & Technology, 43, 6927–6933.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, C. S., Li, F. B., Liu, C. P., & Liang, J. B. (2009). Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. Journal of Hazardous Materials, 162, 716–723.

    Article  CAS  Google Scholar 

  • Will, I. B. S., Moraes, F. E. F., Teixeira, A. C. S. C., Guardani, R., & Nascimento, C. A. O. (2004). Photo-Fenton degradation of wastewater containing organic compounds in solar reactors. Separation and Purification Technology, 34, 51–57.

    Article  CAS  Google Scholar 

  • Yavuz, Y., Koparal, A. S., & Öğütveren, U. B. (2010). Treatment of petroleum refinery wastewater by electrochemical methods. Desalination, 258, 201–205.

    Article  CAS  Google Scholar 

  • Yeh, C. K., Hsu, C. Y., Chiu, C. H., & Huang, K. L. (2008). Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes. Journal of Hazardous Materials, 151, 526–569.

    Article  Google Scholar 

  • Zazo, J. A., Casas, J. A., Mohedano, A. F., Gilarranz, M. A., & Rodríguez, J. J. (2005). Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environmental Sciences & Technology, 39, 9295–9302.

    Article  CAS  Google Scholar 

  • Zhan, M., Yang, X., Xian, Q., & Kong, L. (2006). Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere, 63, 378–386.

    Article  CAS  Google Scholar 

  • Zhao, B., Mele, G., Pio, I., Li, J., Palmisano, L., & Vasapollo, G. (2010). Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst. Journal of Hazardous Materials, 176, 569–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Colombian Institute of Educational Credit and Technical Studies (ICETEX), especially from the Reciprocity Program for Foreigners in Colombia, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainhoa Rubio-Clemente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Clemente, A., Chica, E. & Peñuela, G.A. Petrochemical Wastewater Treatment by Photo-Fenton Process. Water Air Soil Pollut 226, 62 (2015). https://doi.org/10.1007/s11270-015-2321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2321-x

Keywords

Navigation