Skip to main content
Log in

Effect of Swine Manure on Sulfamethazine Degradation in Aerobic and Anaerobic Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Degradation and fate of sulfamethazine (SMZ) were determined under aerobic and anaerobic conditions in soil with and without swine manure amendment. For both aerobic and anaerobic conditions, SMZ disappeared rapidly during the first 7 days followed by slow disappearance which may indicate that SMZ had become more persistent and less available. For soils receiving 100 mg/kg of SMZ, the percent of SMZ remaining in the soil after 63 days were between 25 and 60 %. Depending on the initial SMZ concentration, estimated half-lives for aerobic and anaerobic incubations ranged from 1.2 to 6.6 and 2.3 days to more than 63 days, respectively. Addition of manure (0.054 g/g soil) did not significantly affect the half-lives of SMZ. Inhibitory effects of SMZ on anaerobic microbial respiration were observed in unamended soil at concentrations of 50 mg/kg or higher, but only transient inhibitory effects were found in aerobic soil. Five to 22 % of the 14C[phenyl]-SMZ added were extracted at the end of the incubations while 70 to 91 % of the 14C were converted to bound (non-extractable) forms in both manure amended and unamended soil. Only 0.1 to 1.5 % of 14C-SMZ was mineralized to 14CO2. Disappearance of SMZ in sterilized soil was not completely halted indicating possible contribution of abiotic processes to the disappearance of SMZ in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accinelli, C., Koskinen, W. C., Becker, J. M., & Sadowsky, M. J. (2007). Environmental fate of two sulphonamide antimicrobial agents in soil. Journal of Agricultural and Food Chemistry, 55, 2677–2682.

    Article  CAS  Google Scholar 

  • Amarakoon, I. D., Zvomuya, F., Cessna, A. J., Degenhardt, D., Larney, F. J., & McAllister, T. A. (2014). Runoff losses of excreted chlortetracycline, sulfamethazine, and tylosin from surface-applied and soil incorporated beef cattle feedlot manure. Journal of Environmental Quality, 43, 549–577.

    Article  Google Scholar 

  • Anhalt, J. C., Moorman, T. B., & Koskinen, W. C. (2008). Degradation and sorption of imidacloprid in dissimilar surface and subsurface soils. Journal of Environmental Science and Health, Part B, 43, 207–213.

    Article  CAS  Google Scholar 

  • Aust, M.-O., Godlinski, F., Travis, G. R., Hao, X., McAllister, T. A., Leinweber, P., & Thiele-Bruhn, S. (2008). Distribution of sulfamethazine, chlorotetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental Pollution, 156, 1243–1251.

    Article  CAS  Google Scholar 

  • Awad, Y. M., Kim, S., Abd El-Azeem, S. A. M., Kim, K. H., Kim, K. R., Kim, K. J., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 71, 1433–1440.

    Article  CAS  Google Scholar 

  • Bialk, H. M., Simpson, A. J., & Pedersen, J. A. (2005). Cross-coupling of sulphonamide antimicrobial agents with model humic constituents. Environmental Science and Technology, 39, 4463–4473.

    Article  CAS  Google Scholar 

  • Blackwell, P. A., Boxall, A. B. A., Kay, P., & Nobel, H. (2005). An evaluation of a lower tier exposure assessment model for veterinary medicines. Journal of Agricultural and Food Chemistry, 53, 2192–2201.

    Article  CAS  Google Scholar 

  • Blackwell, P. A., Kay, P., & Boxall, A. B. A. (2007). The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere, 67, 292–299.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Fogg, L. A., Blackwell, P. A., Kay, P., Pemberton, E. J., & Croxford, A. (2004). Veterinary medicines in the environment. Reviews of Environment Contamination and Toxicology, 180, 1–91.

    CAS  Google Scholar 

  • Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S., Kolpin, D. W., Meyer, M. T., Esteban, J. E., Currier, R. W., Smith, K., Thu, K. M., & McGeehin, M. (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment, 299, 89–95.

    Article  CAS  Google Scholar 

  • Garcia-Galán, M. J., Diaz-Cruz, M. S., & Barceló, D. (2008). Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends in Analytical Chemistry, 27, 1008–1022.

    Article  Google Scholar 

  • Haller, M. Y., Müller, S. R., McArdell, C. S., Alder, A. C., & Suter, M. J. F. (2002). Quantification of veterinary antibiotics (sulphonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. Journal of Chromatography, A, 952, 111–120.

    Article  CAS  Google Scholar 

  • Hamscher, G., Pawelzick, H. T., Höper, H., & Nau, H. (2005). Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry, 24, 861–868.

    Article  CAS  Google Scholar 

  • Heise, J., Höltge, S., Schrader, S., & Kreuzig, R. (2006). Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere, 65, 2352–2357.

    Article  CAS  Google Scholar 

  • Henderson, K.L.D., Moorman, T.B., Coats, J.L. (2009). Fate and bioavailability of sulfamethazine in freshwater ecosystems. In K. Henderson, et al.(Eds.), Veterinary Pharmaceuticals in the Environment. ACS Symp. Series, Am, Chem. Soc., Wash. D.C.

  • Heuer, H., Solehati, K., Zimmerling, U., Kleineidam, K., Schloter, M., Műller, T., Focks, A., Thiele-Bruhn, S., & Smalla, K. (2011). Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Applied and Environmental Microbiology, 77, 2527–2530.

    Article  CAS  Google Scholar 

  • Kahle, M., & Stamm, C. (2007). Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 68, 1224–1231.

    Article  CAS  Google Scholar 

  • Kay, P., Blackwell, P. A., & Boxall, A. B. A. (2004). Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 23, 1136–1144.

    Article  CAS  Google Scholar 

  • Kreuzig, R., & Höltage, S. (2005). Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environmental Toxicology and Chemistry, 24, 771–776.

    Article  CAS  Google Scholar 

  • Kreuzig, R., & Höltage, S. (2006). Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere, 65, 2352–2357.

    Article  Google Scholar 

  • Krogh, K. A., Jensen, G. G., Schneider, M. K., Fenner, K., & Halling-Sørensen, B. (2009). Analysis of the dissipation kinetics of ivermectin at different temperatures and in four different soils. Chemosphere, 75, 1097–1104.

    Article  CAS  Google Scholar 

  • Lertpaitoonpan, W., Ong, S. K., & Moorman, T. (2009). Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 76, 558–564.

    Article  CAS  Google Scholar 

  • Liang, B. C., Gregorich, E. G., Schnitzer, M., & Schulten, H. R. (1996). Characterization of water extracts of two manures and their adsorption on soils. Soil Science Society of America Journal, 60, 1758–1763.

    Article  CAS  Google Scholar 

  • Paulson, G. D., Giddings, J. M., Lamoureux, C. H., Mansager, E. R., & Struble, C. B. (1981). The isolation and identification of 14C-sulfamethazine [4-amino-N-(4,6-dimethyl-2-pyrimidinyl)[14C]benzenesulfonamide] metabolites in the tissues and the excreta of swine. Drug Metabolism and Disposition, 9, 142–146.

    CAS  Google Scholar 

  • Sapkota, A. R., Curriero, R. C., Gibson, K. E., & Schwab, K. J. (2007). Antibiotic-resistant Enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environmental Health Perspectives, 115, 1040–1045.

    Article  CAS  Google Scholar 

  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.

    Article  CAS  Google Scholar 

  • Schauss, K., Focks, A., Heuer, H., Kotzerke, A., Schmitt, H., Thiele-Bruhn, S., Smalla, K., Wilke, B.-M., Matthies, M., Amelung, W., Klasmeier, J., & Schloter, M. (2009). Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends in Analytical Chemistry, 28, 612–618.

    Article  CAS  Google Scholar 

  • Schmidt, B., Ebert, J., Lamsöhft, M., Thiede, B., Schumacher-Buffel, R., Ji, R., Corvini, P. F. X., & Schäffer, A. (2008). Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. Journal of Environmental Science and Health, Part B, 43, 8–20.

    Article  CAS  Google Scholar 

  • Sengeløv, G. Y., Agerso, Y., Halling-Sørensen, B., Baloda, S. B., Andersen, J. S., & Jensen, L. B. (2003). Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 28, 589–595.

    Article  Google Scholar 

  • Skold, O. (2000). Sulfonamide resistance: mechanisms and trends. Drug Resistance Updates, 3(3), 155–160.

    Article  CAS  Google Scholar 

  • Stoob, K., Singer, H. P., Stettler, S., Hartman, N., Mueller, S. R., & Stamm, C. P. (2006). Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. Journal of. Chromatography A, 1128, 1–9.

    Article  CAS  Google Scholar 

  • Tappe, W., Herbst, M., Hofmann, D., Koeppchen, S., Kummer, S., Thiele, B., & Groeneweg, J. (2011). Degradation of sulfadiazine by Microbacterium lacus Strain SDZm4, isolated from lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Applied and Environmental Microbiology, 79(8), 2572–2577.

    Article  Google Scholar 

  • ter Laak, T. L., Gebbink, W. A., & Tolls, J. (2006). The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology and Chemistry, 25, 904–911.

    Article  Google Scholar 

  • Thiele-Bruhn, S., & Aust, M. O. (2004). Effects of pig slurry on the sorption of sulphonamide antibiotics in soil. Archives of Environment Contamination and Toxicology, 47, 31–39.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S., & Beck, I. C. (2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere, 59, 457–465.

    Article  CAS  Google Scholar 

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science and Technology, 35, 3397–3406.

    Article  CAS  Google Scholar 

  • Topp, E., Chapman, R., Devers-Lamrani, M., Hartmann, A., Marti, R., Martin-Laurent, F., Sabourin, L., Scott, A., & Sumarah, M. (2012). Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. Journal of Environmental Quality, 42, 173–178.

    Article  Google Scholar 

  • Wang, Q., & Yates, S. R. (2008). Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. Journal of Agricultural and Food Chemistry, 56, 1683–1688.

    Article  CAS  Google Scholar 

  • Wang, M.-J., McGrath, S. P., & Jones, K. C. (1995). Chlorobenzenes in field soil with a history of multiple sewage sludges applications. Environmental Science and Technology, 29, 356–362.

    Article  Google Scholar 

  • Wang, Q.-Q., Bradford, S. A., Zheng, W., & Yates, S. R. (2006a). Sulfadimethoxine degradation kinetics in manure as affected by initial concentration, moisture, and temperature. Journal of Environmental Quality, 35, 2162–2169.

    Article  CAS  Google Scholar 

  • Wang, Q., Guo, M., & Yates, S. R. (2006b). Degradation kinetics of manure-derived sulfadimethoxine in amended soil. Journal of Agricultural and Food Chemistry, 54, 157–163.

    Article  CAS  Google Scholar 

  • Wehrhan, A., Streck, T., Groenweg, J., Vereecken, H., & Kasteel, R. (2010). Long-term sorption and desorption of sulfadiazine in soil: experiments and modeling. Journal of Environmental Quality, 39, 654–666.

    Article  CAS  Google Scholar 

  • Yang, J. F., Ying, G. G., Yang, L. H., Zhao, J. L., Feng, L., Tao, R., Yu, Z. Q., & Peng, P. (2009). Degradation behavior of sulfadiazine in soils under different conditions. Journal of Environmental Science and Health, Part B, 44, 241–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Say Kee Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lertpaitoonpan, W., Moorman, T.B. & Ong, S.K. Effect of Swine Manure on Sulfamethazine Degradation in Aerobic and Anaerobic Soils. Water Air Soil Pollut 226, 81 (2015). https://doi.org/10.1007/s11270-014-2286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2286-1

Keywords

Navigation