Skip to main content

Advertisement

Log in

Effect of Inoculation and Co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on Growth, Fitness, and Copper Accumulation of Maize (Zea mays)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation can be assisted by microorganisms, which promote plant growth and increase heavy metal availability in soil. In this study, we aimed at evaluating the effect of two plant growth-promoting bacteria (PGPB) on phytoextraction of copper (Cu) by maize. We chose the strains based on their ability to synthesize indole compounds, produce siderophores, solubilize phosphorus, and increase soil conductivity and extractable Cu in soil. Then, in glasshouse experiments, we assessed their ability to increase biomass, chlorophyll content, and Cu extraction by maize. Results showed that Acinetobacter sp. RG30 and Pseudomonas putida GN04 were overall the most active strains to synthesize indole, produce siderophores, and solubilize phosphorus, and hence selected for further studies. Also, both were able to significantly increase soil conductivity and release Cu from soil compared to control. Glasshouse experiments showed that Cu had a negative effect on plant growth, but inoculation with bacteria promoted plant growth and chlorophyll content in its presence (p < 0.05). Notably, the effect of inoculation on plant growth was larger on contaminated than on uncontaminated soil, which suggests an overall bacterial effect for alleviation of stress caused by Cu. Inoculation with RG30 or GN04 improved Cu extraction by maize (p < 0.05); interestingly, co-inoculation led to the highest accumulation (200 μg Cu/g plant dry weight). We conclude, therefore, that inoculation with RG30 and GN04 improves metal extraction by increasing plant growth, fitness, and availability of minerals in soil, which represents an important tool for the improvement of phytoextraction processes in polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophyllase activity: effect of heavy metals and calcium. Photosynthetica, 31, 421–425.

    CAS  Google Scholar 

  • Abou-Shanab, R. A., Angle, J. S., Delorme, T. A., Chaney, R. L., van Berkum, P., Moawad, H., Ghanem, K., & Ghozlan, H. A. (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist, 158, 219–224.

    Article  CAS  Google Scholar 

  • Bashan, Y., Bustillos, J., Leyva, L., Hernandez, J. P., & Bacilio, M. (2006). Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Soil Biology and Fertility of Soils, 42, 279–285.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Bibi, M., & Hussain, M. (2005). Effect of copper and lead on photosynthesis and plant pigments in black gram [Vigna mungo (L.) Hepper]. Bulletin of Environmental and Contamination Toxicology, 74, 1126–1133.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Carreño-Lopez, R., Campos-Reales, N., Elmerich, C., & Baca, B. E. (2000). Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Molecular Genetics and Genomics, 264, 521–530.

    Article  Google Scholar 

  • Cataldo, D. A., & Wildung, R. E. (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives, 27, 149–159.

    Article  CAS  Google Scholar 

  • Chen, Y. X., Wang, Y. P., Lin, Q., & Luo, Y. M. (2005). Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International, 31, 861–866.

    Article  CAS  Google Scholar 

  • Drazkiewicz, M., & Baszynski, T. (2005). Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. Journal of Plant Physiology, 162, 1013–1021.

    Article  CAS  Google Scholar 

  • Estrada, G. A., Baldani, V. L. D., Oliveira, D., Urquiaga, S., & Baldani, J. I. (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil, 369, 115–129.

    Article  CAS  Google Scholar 

  • Fernandes, J., & Henriques, F. (1991). Biochemical, physiological, and structural effects of excess copper in plants. Botanical Reviews, 57, 246–273.

    Article  Google Scholar 

  • Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water, Air, and Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  • Garcia-Rosales, G., & Colin-Cruz, A. (2010). Biosorption of lead by maize (Zea mays) stalk sponge. Journal of Environmental Management, 91, 2079–2086.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  Google Scholar 

  • Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793–796.

    CAS  Google Scholar 

  • Gupta, D. K., Srivastava, A., & Singh, V. P. (2008). EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. Journal of Environmental Biology, 29, 903–906.

    CAS  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334.

    Article  CAS  Google Scholar 

  • Hovsepyan, A., & Greipsson, S. (2004). Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. International Journal of Phytoremediation, 6, 305–321.

    Article  CAS  Google Scholar 

  • Komarek, M., Vanek, A., Mrnka, L., Sudova, R., Szakova, J., Tejnecky, V., & Chrastny, V. (2010). Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environmental Pollution, 158, 2428–2438.

    Article  CAS  Google Scholar 

  • Kos, B., & Leštan, D. (2003). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science and Technology, 37, 624–629.

    Article  CAS  Google Scholar 

  • Kumar, K. V., Singh, N., Behl, H. M., & Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere, 72, 678–683.

    Article  CAS  Google Scholar 

  • Lambrecht, M., Okon, Y., Vande Broek, A., & Vanderleyden, J. (2000). Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology, 8, 298–300.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., Buschmann, C., Döll, M., Fietz, H. J., Bach, T., Kozel, U., Meier, D., & Rahmsdorf, U. (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthetic Research, 2, 115–141.

    Article  CAS  Google Scholar 

  • López-Chuken, U., Young, S., & Sánchez-González, M. (2010). The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a “free ion activity model” and implications for phytoremediation. International Journal of Phytoremediation, 12, 680–696.

    Article  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.

    Article  Google Scholar 

  • McKnight, D. M., & Morel, F. M. M. (1979). Release of weak and strong copper-complexing agents by algae. Limnology and Oceanography, 24, 823–837.

    Article  CAS  Google Scholar 

  • McKnight, D. M., & Morel, F. M. M. (1980). Copper complexation by siderophores from filamentous blue-green algae. Limnology and Oceanography, 25, 62–71.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Hopgood, M., Lesage, E., & Tack, F. M. (2005). Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 61, 561–572.

    Article  CAS  Google Scholar 

  • Miranda, C. D., & Rojas, R. (2006). Copper accumulation by bacteria and transfer to scallop larvae. Marine Pollution Bulletin, 52, 293–300.

    Article  CAS  Google Scholar 

  • Murakami, M., & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials, 162, 1185–1192.

    Article  CAS  Google Scholar 

  • Nobel, P. S. (2009). Physicochemical and environmental plant physiology (4th ed.). San Diego: Academic.

    Google Scholar 

  • Ouzounidou, G., Ciamporov, M., Moustakas, M., & Karataglis, S. (1995). Responses of maize (Zea mays L.) plants to copper stress—I. Growth, mineral content and ultrastructure of roots. Environmental and Experimental Botany, 35, 167–176.

    Article  CAS  Google Scholar 

  • Patten, C. L., & Glick, B. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  CAS  Google Scholar 

  • Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Ruiz, O. A., Cassan, F. D., & Luna, M. V. (2007). Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 75, 1143–1150.

    Article  CAS  Google Scholar 

  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya, 17, 362–370.

    CAS  Google Scholar 

  • Pilon, M., Abdel-Ghany, S. E., Cohu, C. M., Gogolin, K. A., & Ye, H. (2006). Copper cofactor delivery in plant cells. Current Opinion in Plant Biology, 9, 256–263.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Purakayastha, T. J., Viswanath, T., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10, 61–72.

    Article  CAS  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2006). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.

    Article  CAS  Google Scholar 

  • Ramamoorthy, S., & Kushner, D. J. (1975). Binding of mercuric and other heavy metal ions by microbial growth media. Microbial Ecology, 2, 162–176.

    Article  CAS  Google Scholar 

  • Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  • Rojas-Tapias, D. F., Bonilla, R., & Dussán, J. (2012a). Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers. Water, Air, and Soil Pollution, 223, 643–654.

    Article  CAS  Google Scholar 

  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012b). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.

    Article  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

    Article  CAS  Google Scholar 

  • Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    Article  CAS  Google Scholar 

  • Sheng, X., Sun, L., Huang, Z., He, L., Zhang, W., & Chen, Z. (2012). Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Journal of Environmental Management, 103, 58–64.

    Article  CAS  Google Scholar 

  • Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62, 1454–1463.

    Article  CAS  Google Scholar 

  • Tanyolaç, D., Ekmekci, Y., & Unalan, S. (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere, 67, 89–98.

    Article  Google Scholar 

  • Wang, H. Q., Lu, S. J., Li, H., & Yao, Z. H. (2007). EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Journal of Environmental Sciences (China), 19, 1496–1499.

    Article  CAS  Google Scholar 

  • Wellburn, A. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    Article  CAS  Google Scholar 

  • Wójcik, M., & Tukiendorf, A. (2003). Response of wild type of Arabidopsis thaliana to copper stress. Biologia Plantarum, 46, 79–84.

    Article  Google Scholar 

  • Yang, R., Luo, C., Chen, Y., & Wang, G. (2013). Copper-resistant bacteria enhance plant growth and copper phytoextraction. International Journal of Phytoremediation, 15(6), 573–584.

    Article  CAS  Google Scholar 

  • Zevenhuizen, L. P. T. M., Dolfing, J., Eshuis, E. J., & Scholten-Koerselman, I. J. (1979). Inhibitory effects of copper on bacteria related to the free ion concentration. Microbial Ecology, 5, 139–146.

    Article  CAS  Google Scholar 

  • Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., & Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant Microbe Interactions, 21, 737–744.

    Article  Google Scholar 

  • Zhi-xin, N., Sun, L. N., Sun, T. H., Li, Y. S., & Wang, H. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences (China), 19, 961–967.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Biological Science Faculty of the Universidad de los Andes in Colombia and the program Jóvenes Investigadores e Innovadores “Virginia Gutiérrez de Pineda” of Colciencias for its funding and support. Daniel Rojas-Tapias also expresses thanks to Mr. Andrés Moreno Galván by his collaboration throughout the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Dussán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Tapias, D.F., Bonilla, R. & Dussán, J. Effect of Inoculation and Co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on Growth, Fitness, and Copper Accumulation of Maize (Zea mays). Water Air Soil Pollut 225, 2232 (2014). https://doi.org/10.1007/s11270-014-2232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2232-2

Keywords

Navigation