Skip to main content

Advertisement

Log in

Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles (nZVI): Physicochemical and Toxicological Analysis of Leachates

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A column experiment was conducted to evaluate the effectiveness of nanoscale zerovalent iron (nZVI) for the in situ immobilization of Pb and Zn in an acidic soil. The impact of nZVI on soil was evaluated by monitoring the physicochemical characteristics of the leachates and their ecotoxicological effects on three species, Vibrio fischeri, Artemia franciscana, and Caenorhabditis elegans. Treatment with nZVI resulted in more effective Pb immobilization in comparison to Zn and reduced the leachability by 98 and 72 %, respectively; the immobilization was stable throughout the experiment. Leachates from nZVI-treated soils showed lower toxicity than leachates from untreated ones. The highest toxicity in treated soils was observed in the first leachate, which presented high values of electrical conductivity due to the leachability of soil ions and those provided by the commercial nanoparticle suspension (Na and Fe). V. fischeri and C. elegans were more sensitive to leachates from nZVI-treated soils polluted with Zn than those from soils polluted with Pb; A. franciscana showed the opposite trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals (2nd ed.). Heidelberg: Springer-Verlang New York Berlin.

    Book  Google Scholar 

  • AFNOR (1991). Détermination de l’inhibition de la luminescence de V. fischeri. NF T90-320, Paris. p. 331.

  • Anderson, B. S., Hunt, J. W., Phillips, B. M., Fairey, R., Roberts, C. A., Oakden, J. M., et al. (2001). Sediment quality in Los Angeles Harbor, USA: a triad approach. Environmental Toxicology and Chemistry, 20, 359–370.

    Article  CAS  Google Scholar 

  • Boluda, R., Quintanilla, J. F., Bonilla, J. A., Sáez, E., & Gamón, M. (2002). Application of the Microtox® test and pollution indices to the study of water toxicity in the Albufera Natural Park (Valencia, Spain). Chemosphere, 46, 355–369.

    Article  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetic, 77, 71–94.

    CAS  Google Scholar 

  • Chen, S. S., Hsu, H. D., & Li, C. W. (2004). A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research, 6, 639–647.

    Article  CAS  Google Scholar 

  • Chen, P. J., Su, C. H., Tseng, C. Y., Tan, S. W., & Cheng, C. H. (2011). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Marine Pollution Bulletin, 63, 339–346.

    Article  CAS  Google Scholar 

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125.

    Article  Google Scholar 

  • Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82, 1675–1682.

    Article  CAS  Google Scholar 

  • El-Temsah, Y. S., & Joner, E. J. (2012). Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 89, 76–82.

    Article  CAS  Google Scholar 

  • Fajardo, C., Ortiz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martín, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86, 802–808.

    Article  CAS  Google Scholar 

  • Froehner, K., Backhaus, T., & Grimme, L. H. (2000). Bioassays with Vibrio fischeri for the assessment of delayed toxicity. Chemosphere, 40, 821–828.

    Article  CAS  Google Scholar 

  • Grieger, K. D., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.

    Article  CAS  Google Scholar 

  • Handy, R. D., van den Brink, N., Chappell, M., Mühling, M., Behra, R., Dušinská, M., et al. (2012). Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology, 21, 933–972.

    Article  CAS  Google Scholar 

  • Höss, S., Jänsch, S., Moser, T., Junker, T., & Römbke, J. (2009). Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicology and Environmental Safety, 72, 1811–1818.

    Article  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives, 117, 1823–1831.

    Article  Google Scholar 

  • Keller, A. A., Garner, K., Miller, R. J., & Lenihan, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS ONE, 7(8), e43983.

    Article  CAS  Google Scholar 

  • Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D., & Zboril, R. (2011). Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 82, 1178–1184.

    Article  CAS  Google Scholar 

  • Kokkali, V., Katramados, I., & Newman, J. D. (2011). Monitoring the effect of metal ions on the mobility of Artemia salina nauplii. Biosensors, 1, 36–45.

    Article  CAS  Google Scholar 

  • Li, X., & Zhang, W. (2007). Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111, 6939–6946.

    Article  CAS  Google Scholar 

  • Li, X., Elliott, D. W., & Zhang, W. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 11–22.

    Article  Google Scholar 

  • Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., & Jiang, G. (2009). Effects of waterborne nano-iron on Medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72, 684–692.

    Article  CAS  Google Scholar 

  • Liendo, M. A., Navarro, G. E., & Sampaio, C. H. (2013). Nano and micro ZVI in aqueous media: copper uptake and solution behavior. Water, Air, & Soil Pollution, 224, 1541.

    Article  Google Scholar 

  • MAPA (1994). Métodos Oficiales de Análisis, vol. III, Spain.

  • Mortimer, M., Kasemets, K., Heinlaan, M., Kurvet, I., & Kahru, A. (2008). High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro, 22, 1412–1417.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Černík, M., Rissing, P., Rickerby, D., et al. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19, 550–558.

    Article  CAS  Google Scholar 

  • Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research, 20, 1041–1049.

    Article  CAS  Google Scholar 

  • Persoone, G., Van de Vell, A., Van Steertegem, M., & Nayer, B. (1989). Predictive value for laboratory tests with aquatic invertebrates: influence of experimental conditions. Aquatic Toxicology, 14, 149–166.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands-a review. Critical Reviews in Environmental Science and Technology, 29, 86–146.

    Article  Google Scholar 

  • Rhue, R. D., & Kamprath, E. J. (1973). Leaching losses of sulfur during winter months when applied as gypsum, elemental S or prilled S. Agronomy Journal, 65, 603–605.

    Article  Google Scholar 

  • Roh, J. Y., Lee, J., & Choi, J. (2006). Assessment of stress-related gene expression in heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environmental Toxicology & Chemistry, 25, 2946–2956.

    Article  CAS  Google Scholar 

  • Ryden, J. C., McLaughlin, J. R., & Syers, J. K. (1977). Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. Journal of Soil Science, 28, 72–92.

    Article  CAS  Google Scholar 

  • Sánchez-Fortún, S., Sanz, F., Santa-María, A., Ros, J. M., De Vicente, M. L., Encinas, M. T., et al. (1997). Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bulletin of Environmental Contamination and Toxicology, 59, 445–451.

    Article  Google Scholar 

  • Singh, R., Misra, V., & Singh, R. P. (2012). Removal of Cr(VI) by Nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Bulletin of Environmental Contamination and Toxicology, 88, 210–214.

    Article  CAS  Google Scholar 

  • Terman, G. L. (1977). Quantitative relationships among nutrients leached from soils. Soil Science Society of America Journal, 41, 935–940.

    Article  CAS  Google Scholar 

  • USEPA (1992). Ground Water Issue. Behavior of metals in soils. EPA/540/S-92/018.

  • van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.

    Article  Google Scholar 

  • Vangronsveld, J., Cunningham, S.D. (1998). Introduction to the concepts. In: Metal-contaminated soils. In situ inactivation and phytorestoration. (eds. J. Vangronsveld , S.D. Cunningham), Springer, New York, pp. 1-15.

  • Vanhaecke, P., Persoone, G. (1984) The ARC-Test: A standardized short-term routine toxicity test with Artemianauplii. Methodolgy and evaluation. In: G. Persoone, J. Jaspers and C. Claus (Eds.). Ecotoxicological Testing for the Marine Environment. State Univ. of Ghent and Inst. Mar. Scient. Res., Bredene, Belgium vol. 2.

  • Wright, D. A., & Welbourn, P. (2002). Environmental toxicology. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41, 2010–2108.

    Google Scholar 

  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhang, M., Wang, Y., Zhao, D., & Pan, G. (2010). Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chinese Science Bulletin, 55, 365–372.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ministerio de Educación y Ciencia (Spain) for supporting Project CTM 2010-20617-C02-02 and Consejería de Educación from Comunidad de Madrid for supporting Project S2009/AMB-1478 (EIADES, www.eiades.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gil-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Díaz, M., Ortiz, L.T., Costa, G. et al. Immobilization and Leaching of Pb and Zn in an Acidic Soil Treated with Zerovalent Iron Nanoparticles (nZVI): Physicochemical and Toxicological Analysis of Leachates. Water Air Soil Pollut 225, 1990 (2014). https://doi.org/10.1007/s11270-014-1990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1990-1

Keywords

Navigation