Skip to main content

Advertisement

Log in

Polycyclic Aromatic Hydrocarbon Deposition in the Snowpack of the Athabasca Oil Sands Region of Alberta, Canada

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the Athabasca Oil Sands Region (AOSR) of Alberta, Canada, increased concentrations of polycyclic aromatic hydrocarbons (PAHs) in the regional ecosystems and downstream of oil sands development have been observed, presumably originating from various sources including those of oil sands and non-oil sands activities. In this study, we investigated the extent that oil sands activities contribute PAHs to the snowpack of the AOSR. The dominant groups of PAHs found in our snow samples were dibenzothiophenes, phenanthrenes/anthracenes, fluranthenes/pyrenes, chrysenes, and fluorenes. These PAHs were highly dominated by alkylated species, especially near oil sands operations. Aerial deposition of PAHs declined exponentially with increasing distance from the geographic center (GC), which was located close to Suncor and Syncrude’s oil sands operations. The higher aerial deposition at similar distances from GC in the N-S versus W-E directions reflects that PAH inputs from oil sands operations are clustered along the Athabasca River. Patterns of air parcel movements, derived from HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modeling, closely matched patterns of aerial deposition, supporting that regional wind patterns influence the transport of PAHs emitted by oil sands operations in the AOSR. The source attribution techniques employed in this study revealed that sampling location influenced the characteristics of PAHs deposited. PAHs deposited at sites close to GC were associated with industrial activity, whereas the influences of other sources became increasingly apparent as distance increased from major oil sands areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AESRD (Alberta Environment and Sustainable Resource Development). (2012). Oil sands information portal. http://environment.alberta.ca/apps/osip/. Accessed 25 Jun 2012.

  • Akre, C. J., Headley, J. V., Conly, F. M., Peru, K. M., & Dickson, L. C. (2004). Spatial patterns of natural polycyclic aromatic hydrocarbons in sediment in the lower Athabasca River. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 1163–1176.

    Article  Google Scholar 

  • Allen, A. G., da Rocha, G. O., Cardoso, A. A., Paterlini, W. C., Machado, C. M. D., & de Andrade, J. B. (2008). Atmospheric particulate polycyclic aromatic hydrocarbons from road transport in Southeast Brazil. Transportation Research Part D, 13, 483–490.

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2005). Toxicology profile for polyaromatic hydrocarbons. Boca Raton: CRC Press.

    Google Scholar 

  • Boom, A., & Marsalek, J. (1988). Accumulation of polycyclic aromatic hydrocarbons (PAHs) in an urban snowpack. Science of the Total Environment, 74, 133–148.

    Article  CAS  Google Scholar 

  • Chen, C., Tang, Y., Jiang, X., Qi, Y., Cheng, S., Qiu, C., et al. (2012). Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicological Sciences, 125, 248–261.

    Article  CAS  Google Scholar 

  • Colavecchia, M. V., Backus, S. M., Hodson, P. V., & Parrott, J. L. (2004). Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 23, 1709–1718.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163, 946–958.

    Article  Google Scholar 

  • Delfino, R. J. (2002). Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research. Environmental Health Perspectives, 110, 573–589.

    Article  CAS  Google Scholar 

  • Douglas, G. S., Bence, A. E., Prince, R. C., McMillen, S. J., & Butler, E. L. (1996). Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environmental Science & Technology, 30, 2332–2339.

    Article  CAS  Google Scholar 

  • Duval, M. M., & Friedlander, S. K. (1982). Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmosphere: application of a chemical species balance method with first order chemical decay. U.S. EPA Report EPA-600/2-81-161. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • ERCB (Energy Resources Conservation Board). (2011). Alberta’s energy reserves 2011 and supply/demand outlook 2012–2021. ST98-2012. Calgary: Energy Resources Conservation Board.

    Google Scholar 

  • ESRI. (2012). ArcGIS desktop 9.3.1. Redlands: Environmental Systems Research Institute.

    Google Scholar 

  • Flowers, L., Rieth, S. H., Cogliano, V. J., Foureman, G. L., Hertzberg, R., Hofmann, E. L., et al. (2002). Health assessment of polycyclic aromatic hydrocarbon mixtures: current practices and future directions. Polycyclic Aromatic Compounds, 22, 811–821.

    Article  CAS  Google Scholar 

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmospheric Environment, 42, 8139–8149.

    Article  CAS  Google Scholar 

  • Government of Canada. (2012). Historical climate data. http://www.climate.weatheroffice.ec.gc.ca/. Accessed 25 Jun 2012.

  • Guo, Y. Y., Wu, K. S., Huo, X., & Xu, X. (2011). Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health, 73, 22–25.

    CAS  Google Scholar 

  • Hall, R. I., Wolfe, B. B., Wiklund, J. A., Edwards, T. W. D., Farwell, A. J., & Dixon, D. G. (2012). Has Alberta oil sands development altered delivery of polycyclic aromatic compounds to the Peace-Athabasca Delta? PLoS ONE, 7(9), e46089.

    Article  CAS  Google Scholar 

  • Harvey, R. G. (1997). Polycyclic aromatic hydrocarbons. New York: John Wiley & Sons.

    Google Scholar 

  • Janjic, Z. I. (2003). A nonhydrostatic model based on a new approach. Meteorology and Atmospheric Physics, 82, 271–285.

    Article  Google Scholar 

  • Jautzy, J., Ahad, J. M. E., Gobeil, C., & Savard, M. M. (2013). A century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures. Environmental Science & Technology. doi:10.1021/es400642e.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471.

    Article  Google Scholar 

  • Kelly, E. N., Short, J. W., Schindler, D. W., Hodson, P. V., Ma, M. S., Kwan, A. K., et al. (2009). Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22346–22351.

    Article  CAS  Google Scholar 

  • Kelly, E. N., Schindler, D. W., Hodson, P. V., Short, J. W., Radmanovich, R., & Nielsen, C. C. (2010). Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16178–16183. doi:10.1073/pnas.1008754107/-/DCSupplemental. Supporting information.

    Article  CAS  Google Scholar 

  • Kurek, J., Kirk, J., Muir, D. C. G., Wang, X., Evans, M. S., & Smol, J. P. (2012). Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1217675110.

    Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). Boston: McGraw-Hill Irwin.

    Google Scholar 

  • Lopes, W. A., & deAndrade, J. B. (1996). Sources, formation, reactivity and quantification of polycyclic aromatic hydrocarbons (PAH) in atmosphere. Quimica Nova, 19(5), 497–516.

    CAS  Google Scholar 

  • Marsalek, J. (1990). PAH transport by urban runoff from an industrial city. In Y. Iwasa & T. Sueishi (Eds.), Proceedings of the Fifth International Conference on Urban Storm Drainage (pp. 481–486). Japan: Osaka University.

    Google Scholar 

  • Martin, F. L., Piearce, T. G., Hewer, A., Phillips, D. H., & Semple, K. T. (2005). A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil. Environmental Pollution, 138, 307–315.

    Article  CAS  Google Scholar 

  • Menzie, C. A., Hoeppner, S. S., Cura, J. J., Freshman, J. S., & LaFrey, E. M. (2002). Urban and suburban stormwater runoff as a source of polycyclic aromatic hydrocarbons (PAHs) to Massachusetts estuarine and coastal environments. Estuaries, 25, 165–176.

    Article  CAS  Google Scholar 

  • Motelay-Massei, A., Ollivon, D., Garban, B., Tiphagne- Larcher, K., Zimmerlin, I., & Chevreuil, M. (2007). PAHs in the bulk atmospheric deposition of the Seine river basin: source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, 67, 312–321.

    Article  CAS  Google Scholar 

  • Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596–1602.

    Article  CAS  Google Scholar 

  • Nikolaou, K., Masclet, P., & Mouvier, G. (1984). Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere: a critical review. Science of the Total Environment, 32, 103–132.

    Article  CAS  Google Scholar 

  • NOAA ARL (National Oceanic and Atmospheric Administration Air Research Laboratory). (2012). HYSPLIT—Hybrid Single Particle Lagrangian Integrated Trajectory model. http://ready.arl.noaa.gov/HYSPLIT.php/. Accessed 6 Jun 2012.

  • Perera, F. P., Li, Z. G., Whyatt, R., Hoepner, L., Wang, S. A., Camann, D., et al. (2009). Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics, 124, E195–E202.

    Article  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Sauer, T. C., & Uhler, A. D. (1994). Pollutant source identification and allocation: advances in hydrocarbon fingerprinting. Remediation, 5, 25–50.

    Article  Google Scholar 

  • Saunders, C. R., Shockley, D. C., & Knuckles, M. E. (2003). Fluoranthene-induced neurobehavioral toxicity in F-344 rats. International Journal of Toxicology, 22, 263–276.

    Article  CAS  Google Scholar 

  • Sharma, M., & McBean, E. A. (2001). PAH deposition to snow surface: chemical analysis and interpretation of results. Environmental Science and Pollution Research, 8(1), 11–18.

    Article  CAS  Google Scholar 

  • Simasuwannarong, B., Satapanajaru, T., Khuntong, S., & Pengthamkeerati, P. (2012). Spatial distribution and risk assessment of As, Cd, Cu, Pb, and Zn in topsoil at Rayong Province, Thailand. Water, Air, and Soil Pollution, 223, 1931–1943.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Agudelo-Castaneda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. D. O., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390–403.

    Article  CAS  Google Scholar 

  • Timoney, K. P., & Lee, P. (2011). Polycyclic aromatic hydrocarbons increase in Athabasca River delta sediment: temporal trends and environmental correlates. Environmental Science & Technology, 45, 4278–4284.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Usenko, S., Staci, L., Simonich, M., Hageman, K. J., Schrlau, J. E., Geiser, L., Campbell, D. H., Appleby, P. G., & Landers, D. H. (2010). Sources and deposition of polycyclic aromatic hydrocarbons to Western US National Parks. Environmental Science and Technology, 44, 4512–4518.

    Article  CAS  Google Scholar 

  • Vehniäinen, E. R., Häkkinen, J., & Oikari, A. (2003). Photoinduced lethal and sublethal toxicity of retene, a polycyclic aromatic hydrocarbon derived from resin acid, to coregonid larvae. Environmental Toxicology and Chemistry, 22, 2995–3000.

    Article  Google Scholar 

  • Wang, Z. D., & Fingas, M. F. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47, 423–452.

    Article  CAS  Google Scholar 

  • Wang, X. J., Zheng, Y., Liu, R. M., Li, B. G., Cao, J., & Tao, S. (2003). Kriging and PAH pollution assessment in the topsoil of Tianjin area. Bulletin of Environmental Contamination and Toxicology, 71, 189–195.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O. W., Cheung, K. C., et al. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Yang, C., Wang, Z. D., Yang, Z. Y., Hollebone, B., Brown, C. E., Landriault, M., et al. (2011). Chemical fingerprints of Alberta oil sands and related petroleum products. Environmental Forensics, 12, 173–188.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Shelley Manchur and Brian Jackson for performing the field work, Preston McEachern for suggestions on study design and providing valuable inputs, and Hannah McKenzie for GIS support. We also wish to thank Julius Pretorius, Grant Prill, Ryan Rybchuk, and Brian Fahlman (Alberta Innovates Technology Futures); Lawrence Cheng and Caroline Bampfylde (Alberta Environment and Sustainable Resource Development); and Mike McCarthy and Steve Brown (Sonoma Technology Inc.). Base GIS data was provided by the Spatial Data Warehouse Ltd. Funding for this study was provided by Alberta Environment and Sustainable Resource Development’s Comprehensive Contaminant Load Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 609 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Sharma, K., Brassard, B.W. et al. Polycyclic Aromatic Hydrocarbon Deposition in the Snowpack of the Athabasca Oil Sands Region of Alberta, Canada. Water Air Soil Pollut 225, 1910 (2014). https://doi.org/10.1007/s11270-014-1910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1910-4

Keywords

Navigation