Skip to main content
Log in

Bioremediation of Arsenic-Contaminated Water: Recent Advances and Future Prospects

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic contamination of groundwater and surface water is widespread throughout the world. Considering its carcinogenicity and toxicity to human and animal health, remediation of arsenic-contaminated water has become a high priority. There are several physicochemical-based conventional technologies available for removing arsenic from water. However, these technologies possess a number of limitations such as high cost and generation of toxic by-products, etc. Therefore, research on new sustainable and cost-effective arsenic removal technologies for water has recently become an area of intense research activity. Bioremediation technology offers great potential for possible future application in decontamination of pollutants from the natural environment. It is not only environmentally friendly but cost-effective as well. This review focuses on the state-of-art knowledge of currently available arsenic remediation methods, their prospects, and recent advances with particular emphasis on bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401(6753), 545–545.

    CAS  Google Scholar 

  • Adeyemi, A. O. (2009). Bioaccumulation of arsenic by fungi. American Journal of Environmental Sciences, 5(3), 364–370.

    CAS  Google Scholar 

  • Ahmann, D., Roberts, A. L., Krumholz, L. R., & Morel, F. M. M. (1994). Microbe grows by reducing arsenic. Nature, 371(6500), 750.

    CAS  Google Scholar 

  • Ahmann, D., Krumholz, L. R., Hemond, H. F., Lovley, D. R., & Moral, F. M. M. (1997). Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environmental Science and Technology, 31(10), 2923–2930.

    CAS  Google Scholar 

  • Amin, M. N., Kaneco, S., Kitagawa, T., Begum, A., Katsumata, H., Suzuki, T., et al. (2006). Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial & Engineering Chemistry Research, 45(24), 8105–8110.

    CAS  Google Scholar 

  • Anderson, G. L., Williams, J., & Hille, R. (1992). The purification and characterisation of arsenite oxidase from Alcaligenes faecalis, a molybdenum containing hydroxylase. The Journal of Biological Chemistry, 267(33), 23674–23682.

    CAS  Google Scholar 

  • Anirudhan, T. S., & Unnithan, M. R. (2007). Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere, 66(1), 60–66.

    CAS  Google Scholar 

  • Bachate, S. P., Khapare, R. M., & Kodam, K. M. (2012). Oxidation of arsenite by two β-proteobacteria isolated from soil. Applied Microbiology and Biotechnology, 93(5), 2135–2145.

    CAS  Google Scholar 

  • Baes, A. U., Okuda, T., Nishijima, W., Shoto, E., & Okada, M. (1997). Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Science and Technology, 35(7), 89–95.

    CAS  Google Scholar 

  • Bahar, M.M., Megharaj, M., & Naidu, R. (2013a). Kinetics of arsenite oxidation of by Variovorax sp. MM-1 isolated from a soil containing low arsenic and identification of arsenite oxidase gene. Journal of Hazardous Materials. http://dx.doi.org/10.1016/j.jhazmat.2012.11.064 (in press).

  • Bahar, M. M., Megharaj, M., & Naidu, R. (2012). Arsenic bioremediation potential of new arsenic oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation, 23(6), 803–812.

    CAS  Google Scholar 

  • Bahar, M.M., Megharaj, M., & Naidu, R. (2013b). Toxicity, transformation and accumulation of arsenic in a microalga Scenedesmus sp. isolated from soil. Journal of Applied Phycology, 25(3), 913–917.

    Google Scholar 

  • Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78–91.

    CAS  Google Scholar 

  • Banerjee, S., Majumdar, J., Samal, A. C., Bhattachariya, P., & Santra, S. C. (2013). Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 3(1), 1–10.

  • Bang, S., Patel, M., Lippincott, L., & Meng, X. (2005). Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 60(3), 389–397.

    CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Routh, J., & Khan, A. A. (2002). Arsenic in Groundwater of the Bengal Delta Plain Aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4), 538–545.

    CAS  Google Scholar 

  • Battaglia-Brunet, F., Dictor, M. C., Garrido, F., Crouzet, C., Morin, D., Dekeyser, K., et al. (2002). An arsenic(III)-oxidizing bacterial population: election, characterization, and performance in reactors. Journal of Applied Microbiology, 93(4), 656–667.

    CAS  Google Scholar 

  • Battaglia-Brunet, F., Joulian, C., Garrido, F., Dictor, M. C., Morin, D., Coupland, K., et al. (2006). Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek, 89(1), 99–108.

    CAS  Google Scholar 

  • Beceiro-González, E., De la Taboada Calzada, A., Alonso-Rodriguez, E., López-Mahı́a, P., Muniategui-Lorenzo, S., & Prada-Rodrı́guez, D. (2000). Interaction between metallic species and biological substrates: approximation to possible interaction mechanisms between the alga Chlorella vulgaris and arsenic(III). TrAC, Trends in Analytical Chemistry, 19(8), 475–480.

    Google Scholar 

  • Bentley, R., & Chasteen, T. G. (2002). Microbial methylation of metalloids: arsenic, antimony and Bismuth. Microbiology and Molecular Biology Reviews, 66(2), 250–271.

    CAS  Google Scholar 

  • Blum, J. S., Bindi, A. B., Buzzelli, J., Stolz, J. F., & Oremland, R. S. (1998). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Archives of Microbiology, 171(1), 19–30.

    CAS  Google Scholar 

  • Bright, D. A., Brock, S., Reimer, K. J., Cullen, W. R., Hewitt, G. M., & Jafaar, J. (1994). Methylation of arsenic by anaerobic microbial consortia isolated from lake sediment. Applied Organometallic Chemistry, 8(4), 415–422.

    CAS  Google Scholar 

  • Campos, V. L., Escalante, G., Yañez, J., Zaror, C. A., & Mondaca, M. A. (2009). Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile. Journal of Basic Microbiology, 49(Suppl 1), S93–S97.

    Google Scholar 

  • Campos, V. L., Valenzuela, C., Yarza, P., Kämpfer, P., Vidal, R., & Zaror, C. (2010). Pseudomonas arsenicoxydans sp. nov., an arsenite-oxidizing strain isolated from the Atacama desert. Systematic and Applied Microbiology, 33(4), 193–197.

    CAS  Google Scholar 

  • Cánovas, D., Vooijs, R., Schat, H., & de Lorenzo, V. (2004). The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. The Journal of Biological Chemistry, 279(49), 51234–51240.

    Google Scholar 

  • Čerňanský, S., Urík, M., Ševc, J., & Khun, M. (2007). Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environmental Science and Pollution Research, 14(1), 31–35.

    Google Scholar 

  • Challenger, F. (1945). Biological methylation. Chemical Reviews, 36(3), 315–361.

    CAS  Google Scholar 

  • Chang, J.-S., Yoon, I.-H., Lee, J.-H., Kim, K.-R., An, J., & Kim, K.-W. (2010). Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environmental Geochemistry and Health, 32(2), 95–105.

    CAS  Google Scholar 

  • Chojnacka, K. (2010). Biosorption and bioaccumulation—the prospects for practical applications. Environment International, 36(3), 299–307.

    CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713–764.

    CAS  Google Scholar 

  • Dastidar, A., & Wang, Y.-T. (2009). Arsenite oxidation by batch cultures of Thiomonas arsenivorans strainb6. Journal of Environmental Engineering, 135(8), 708–715.

    CAS  Google Scholar 

  • Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 157(2–3), 220–229.

    CAS  Google Scholar 

  • Duan, M., Wang, Y., Xie, X., Su, C., & Li, J. (2013). Arsenite oxidizing bacterium isolated from high arsenic groundwater aquifers from Datong Basin, Northern China. Procedia Earth and Planetary Science, 7, 232–235.

    Google Scholar 

  • Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.-C., & Bonnefoy, V. (2008). Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environmental Microbiology, 10(1), 228–237.

    CAS  Google Scholar 

  • Edvantoro, B. B., Naidu, R., Megharaj, M., Merrington, G., & Singleton, I. (2004). Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Applied Soil Ecology, 25, 207–217.

    Google Scholar 

  • Ellis, P. J., Conrads, T., Hille, R., Battaglia, B., & Kuhn, P. (2001). Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure, 9(2), 125–132.

    CAS  Google Scholar 

  • EPA. (1988). Special report on ingested inorganic. Skin Cancer; Nutritional Essentiality, US Environmental Protection Agency, EPA/625/3-87/-13.

  • Fisher, E., Dawson, A. M., Polshyna, G., Lisak, J., Crable, B., Perera, E., et al. (2008). Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Annals of the New York Academy of Sciences, 1125, 230–241.

    CAS  Google Scholar 

  • Garcia-Dominguez, E., Mumford, A., Rhine, E. D., Paschal, A., & Young, L. Y. (2008). Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiology Ecology, 66(2), 401–410.

    CAS  Google Scholar 

  • Ghimire, K. N., Inoue, K., Makino, K., & Miyajima, T. (2002). Adsorptive removal of arsenic using orange juice residue. Seperation Science and Technology, 37(2), 2785–2799.

    CAS  Google Scholar 

  • Ghimire, K. N., Inoue, K., Yamaguchi, H., Makino, K., & Miyajima, T. (2003). Adsorptiveseparation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 37(20), 4945–4953.

    CAS  Google Scholar 

  • Gihring, T. M., & Banfield, J. F. (2001). Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiology Letters, 204(2), 335–340.

    CAS  Google Scholar 

  • Green, H. H. (1918). Description of a bacterium that oxidizes arsenite and one which reduces arsenate to arsenite from a cattle-dipping tank. South African Journal of Science, 14, 465–467.

    CAS  Google Scholar 

  • Guha-Mazumder, D. N., Das-Gupta, J., Chakraborty, A. K., Chatterjee, A., Das, D., & Chakraborty, D. (1992). Environmental pollution and chronic arsenicosis in south Calcutta. Bulletin of the World Health Organization, 70(4), 481–485.

    Google Scholar 

  • Guo, P., Chou, Y., Wang, C., Liu, X., & Liu, J. (2011). Arsenic speciation and effect of arsenate inhibition in a Mycrocystis aeruginosa culture medium under different phosphate regimes. Environmental Toxicology and Chemistry, 30, 1754–1759.

    Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.

    CAS  Google Scholar 

  • Hassan, K. M., Fukuhara, T., Hai, F. H., Bari, Q. H., & Islam, K. M. S. (2009). Development of a bio-physicochemical technique for arsenic removal from groundwater. Desalination, 249(1), 224–229.

    CAS  Google Scholar 

  • Hoeft, S. E., Blum, J. S., Stolz, J. F., Tabita, F. R., Witte, B., King, G. M., et al. (2007). Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 3), 504–512.

    CAS  Google Scholar 

  • Huber, R., Sacher, M., Vollmann, A., Huber, H., & Rose, D. (2000). Respiration of arsenate and selenate by hyperthermophilic archaea. Systematic and Applied Microbiology, 23(3), 305–314.

    CAS  Google Scholar 

  • IARC. (1987). Monographs on the evaluation of the carconigenic risk to humans: arsenic and arsenic compunds (Group 1). Supplement 7, International Agency for Research on Cancer (pp. 100103), Lyon.

  • Ilialetdinov, A. N., & Abdrashitova, S. A. (1981). Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia, 50(2), 197–204.

    CAS  Google Scholar 

  • Inskeep, W. P., Macur, R. E., Hamamura, N., Warelow, T. P., Ward, S. A., & Santini, J. M. (2007). Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology, 9(4), 934–943.

    CAS  Google Scholar 

  • IPCS 2001. Environmental Health Criteria 224. Arsenic and arsenic compunds, World Health Organization.

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    CAS  Google Scholar 

  • Jahan, K., Mosto, P., Mattson, C., Frey, E., & Derchak, L. (2006). Microbial removal of arsenic. Water, Air, and Soil Pollution, 6(1–2), 71–82.

    CAS  Google Scholar 

  • Jain, R., Adhikary, H., Jha, S., Jha, A., & Kumar, G. N. (2012). Remodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. Strain NAU-1. Microbial Biotechnology, 5(6), 764–772.

    Google Scholar 

  • Kapoor, A., & Viraraghavan, T. (1995). Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53(3), 195–206.

    CAS  Google Scholar 

  • Karadjova, I. B., Slaveykova, V. I., & Tsalev, D. L. (2008). The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquatic Toxicology, 87(4), 264–271.

    CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38(1), 17–26.

    CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2006). Comparative evaluation of conventional and alternative methods for the removal of arsenic from contaminated groundwaters. Reviews on Environmental Health, 21(1), 25–41.

    CAS  Google Scholar 

  • Katsoyiannis, I. A., Zouboulis, A. I., & Jekel, M. (2004). Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Industrial & Engineering Chemistry Research, 43(2), 486–493.

    CAS  Google Scholar 

  • Kulp, T. R., Hoeft, S. E., & Oremlan, R. S. (2004). Redox transformations of arsenic oxyanions in periphyton communities. Applied and Environmental Microbiology, 70(11), 6428–6434.

    CAS  Google Scholar 

  • Lett, M.-C., Muller, D., Lièvremont, D., Silver, S., & Santini, J. (2012). Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. Journal of Bacteriology, 194(2), 207–208.

    CAS  Google Scholar 

  • Levy, J. L., Stauber, J. L., Adams, M. S., Maher, W. A., Kirby, J. K., & Jolley, D. F. (2005). Toxicity, biotransformation and mode of action of arsenic in two freshwater microalgae. Environmental Toxicology and Chemistry, 24(10), 2630–2639.

    CAS  Google Scholar 

  • Liao, V. H.-C., Chu, Y.-J., Su, Y.-C., Hsiao, S. Y., Wei, C. C., Liu, C. W., et al. (2011). Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(1–2), 20–29.

    CAS  Google Scholar 

  • Lièvremont, D., Bertin, P. N., & Lett, M.-C. (2009). Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie, 91(10), 1229–1237.

    Google Scholar 

  • Litter, M., Morgada, M., & Bundschuh, J. (2010). Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 158(5), 1105–1118.

    CAS  Google Scholar 

  • Lorenzen, L., van Deventer, J. S. J., & Landi, W. M. (1995). Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Minerals Engineering, 8(4/5), 557–569.

    CAS  Google Scholar 

  • Loukidou, M. X., Matis, K. A., Zouboulis, A. I., & Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 37(18), 4544–4552.

    CAS  Google Scholar 

  • Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8(3), 285–289.

    CAS  Google Scholar 

  • Macur, R., Jackson, C., Botero, L., McDermott, T., & Inskeep, W. (2004). Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science and Technology, 38(1), 104–111.

    CAS  Google Scholar 

  • Macy, J. M., Nunan, K., Hagen, K. D., Dixon, D. R., Harbour, P. J., Cahill, M., et al. (1996). Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. International Journal of Systematic Bacteriology, 46(4), 1153–1157.

    CAS  Google Scholar 

  • Maeda, S., Nakashima, S., Takeshita, T., & Higashi, S. (1985). Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment. Separation Science and Technology, 20(2–3), 153–161.

    CAS  Google Scholar 

  • Maeda, S., Kusadome, K., Arima, H., Ohki, A., & Naka, K. (1992). Uptake and excretion of total inorganic arsenic by the freshwater alga Chlorella vulgaris. Applied Organometallic Chemistry, 6(4), 399–405.

    CAS  Google Scholar 

  • Maheswari, S., & Murugesan, A. G. (2009). Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environmental Technology, 30(9), 921–926.

    CAS  Google Scholar 

  • Maheswari, S., & Murugesan, A. G. (2011). Biosorption of As(III) ions from aqueous solution using dry, heat-treated and NaOH-treated Aspergillus nidulans. Environmental Technology, 32(1–2), 211–219.

    CAS  Google Scholar 

  • Malasarn, D., Keeffe, J. R., & Newman, D. K. (2008). Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. Journal of Bacteriology, 190(1), 135–142.

    CAS  Google Scholar 

  • Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., et al. (1996). Arsenic in groundwater in seven districts of West Bengal, India the biggest arsenic calamity in the world. Current Science (Bangalore), 70(11), 976–986.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235.

    CAS  Google Scholar 

  • Manju, G. N., Raji, C., & Anirudhan, T. S. (1998). Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10), 3062–3070.

    CAS  Google Scholar 

  • McArthur, J. M., Ravenscroft, P., Safiulla, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117.

    CAS  Google Scholar 

  • McBride, B. C., & Wolfe, R. S. (1971). Biosynthesis of dimethylarsine by Methanobacterium. Biochemistry, 10(23), 4312–4317.

    CAS  Google Scholar 

  • Means, J. L., & Hinchee, R. E. (1994). Emerging technology for bioremediation of metals. Boca Raton: CRC Press.

    Google Scholar 

  • Michalke, K., Wickenheiser, E. B., Mehring, M., Hirner, A. V., & Hensel, R. (2000). Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Applied and Environmental Microbiology, 66(7), 2791–2796.

    CAS  Google Scholar 

  • Mokashi, S. A., & Paknikar, K. M. (2002). Arsenic(III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Letters in Applied Microbiology, 34(4), 258–262.

    CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2006). Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. Journal of Hazardous Materials, 137(1), 464–479.

    CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. Journal of Hazardous Materials, 153(1–2), 588–599.

    CAS  Google Scholar 

  • Mukherjee, A., Das, D., Mondal, S. K., Biswas, R., Das, T. K., Boujedaini, N., et al. (2010). Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicology and Environmental Safety, 73(2), 172–182.

    CAS  Google Scholar 

  • Muller, D., Lièvremont, D., Simeonova, D. D., Hubert, J. C., & Lett, M. C. (2003). Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. Journal of Bacteriology, 185(1), 135–141.

    CAS  Google Scholar 

  • Murugesan, G. S., Sathishkumar, M., & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology, 97(3), 483–487.

    CAS  Google Scholar 

  • Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry, 16(5), 917–927.

    CAS  Google Scholar 

  • Ng, J. C., & Moore, M. R. (2005). Arsenic in drinking water: a natural killer in Bangladesh and beyond. The Medical Journal of Australia, 183(11–12), 562–563.

    Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

    CAS  Google Scholar 

  • Niggemyer, A., Spring, S., Stackebrandt, E., & Rosenzweig, R. F. (2001). Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Applied and Environmental Microbiology, 67(12), 5568–5580.

    CAS  Google Scholar 

  • Nriagu, J.O., Bhattacharya, P., Mukherjee, A.B.., Bundschuh, J., Zevenhoven, R., & Loeppert, R.H. (2007). Arsenic in soil and groundwater: an overview. In: P. Bhattacharya & H.L. Richard (Eds.), Trace metals and other contaminants in the environment (pp. 3−60). Amsterdam: Elsevier.

  • Ordóñez, E., Letek, M., Valbuena, N., Gil, J. A., & Mateos, L. M. (2005). Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Applied and Environmental Microbiology, 71(10), 6206–6215.

    Google Scholar 

  • Osborne, F. H., & Ehrlich, H. L. (1976). Oxidation of arsenite by a soil isolate of Alcaligenes. Journal of Applied Microbiology, 41(2), 295–305.

    CAS  Google Scholar 

  • Pagnanelli, F., Mainelli, S., Vegliò, F., & Toro, L. (2003). Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chemical Engineering Science, 58(20), 4709–4717.

    CAS  Google Scholar 

  • Pal, A., & Paknikar, K. M. (2012). Bioremediation of arsenic from contaminated water. In T. Satyanarayana et al. (Eds.), Microorganisms in environmental management: Microbes and environment (pp. 447–523). Netherlands: Springer.

    Google Scholar 

  • Parvez, F., Chen, Y., Argos, M., Hussain, A. Z., Momotaj, H., Dhar, R., et al. (2006). Prevalence of arsenic exposure from drinking water and awareness of its health risks in a Bangladeshi population: results from a large population-based study. Environmental Health Perspective, 114(3), 355–359.

    CAS  Google Scholar 

  • Perez-Jimenez, J. R., DeFraia, C., & Young, L. Y. (2005). Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochemical and Biophysical Research Communications, 338(2), 825–829.

    CAS  Google Scholar 

  • Páez-Espino, D., Tamames, J., de Lorenzo, V., & Cánovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22(1), 117–130.

    Google Scholar 

  • Pawlik-Skowrońska, B., Pirszel, J., Kalinowska, R., & Skowroński, T. (2004). Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquatic Toxicology, 70(3), 201–212.

    Google Scholar 

  • Philips, S. E., & Taylor, M. L. (1976). Oxidation of arsenite to arsenate by Alcaligenes faecalis. Applied and Environmental Microbiology, 32(2), 392–399.

    CAS  Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2006). Arsenic removal from an aqueous solution by a modified fungal biomass. Water Research, 40(3), 549–552.

    CAS  Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2009). Biological filtration for removal of arsenic from drinking water. Journal of Environmental Management, 90(5), 1956–1961.

    CAS  Google Scholar 

  • Qin, J., Lehr, C. R., Yuan, C., Le, X. C., McDermott, T. R., & Rosen, B. P. (2009). Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. PNAS, 106(13), 5213–5217.

    CAS  Google Scholar 

  • Rehman, A., Butt, S. A., & Hasnain, S. (2010). Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. African Journal of Biotechnology, 9(10), 1493–1498.

    CAS  Google Scholar 

  • Rhine, E. D., Phelps, C. D., & Young, L. Y. (2006). Anaerobic arsenite oxidation by novel denitrifying isolates. Environmental Microbiology, 8(5), 899–908.

    CAS  Google Scholar 

  • Rhine, E. D., Chadhain, S. M. N., Zylstra, G. J., & Young, L. Y. (2007). The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochemical and Biophysical Research Communications, 354(3), 662–667.

    CAS  Google Scholar 

  • Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529(1), 86–92.

    CAS  Google Scholar 

  • Salmassi, T. M., Venkateswaren, K., Satomi, M., Newman, D. K., & Hering, J. G. (2002). Oxidation of arsenite by Agrobacterium albertimagni AOL15, sp. nov., isolated from hot creek, California. Geomicrobiology Journal, 19(1), 53–66.

    CAS  Google Scholar 

  • Santini, J. M., Sly, L. I., Schnagl, R. D., & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology, 66(1), 92–97.

    CAS  Google Scholar 

  • Santini, J. M., Sly, L. I., Wen, A., Comrie, D., Wulf-Durand, P. D., & Macy, J. M. (2002). New arsenite-oxidizing bacteria isolated from Australian gold mining environments- Phylogenetic relationships. Geomicrobiology Journal, 19(1), 67–76.

    CAS  Google Scholar 

  • Santini, J. M., Hoven, N., & Vanden, R. (2004). Molybdenum containing arsenite oxidase of chemolithoautotrophic arsenite oxidiser NT-26. Journal of Bacteriology, 186(6), 1614–1619.

    CAS  Google Scholar 

  • Sari, A., & Tuzen, M. (2009). Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. Journal of Hazardous Materials, 164(1–2), 1372–1378.

    CAS  Google Scholar 

  • Sathishkumar, M., Murugesan, G. S., Ayyasamy, P. M., Swaminathan, K., & Lakshmanaperumalsamy, P. (2004). Bioremediation of arsenic contaminated groundwater by modified mycelial pellets of Aspergillus fumigatus. Bulletin of Environmental Contamination and Toxicology, 72(3), 617–624.

    CAS  Google Scholar 

  • Sehlin, H. M., & Lindström, E. B. (1992). Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiology Letters, 93(1), 87–92.

    CAS  Google Scholar 

  • Shah, R., & Jha, S. (2013). Alishewanella sp. strain GIDC-5, Arsenite hypertolerant bacteria isolated from industrial effluent of South Gujarat, India. Chemistry and Ecology. http://dx.doi.org/10.1080/02757540.2013.774379.

  • Shariatpanahi, M., Anderson, A. C., Abdelghani, A. A., & Englande, A. J. (1983). Microbialmetabolism of an organicarsenical herbicide. In T. A. Oxley & S. Barry (Eds.), Biodeterioration 5 (pp. 268–277). New York: Wiley.

    Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.

    CAS  Google Scholar 

  • Simeonova, D. D., Micheva, K., Muller, D. A. E., Lagarde, F., Lett, M.-C., Groudeva, V. I., et al. (2005). Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnology and Bioengineering, 91(4), 441–446.

    CAS  Google Scholar 

  • Singh, H. (2006). Mycoremediation: fungal bioremediation. Hoboken: Wiley.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    CAS  Google Scholar 

  • Srivastava, P. K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N., & Tripathi, R. D. (2011). Biological removal of arsenic pollution by soil fungi. Science of The Total Environment, 409(12), 2430–2442.

    CAS  Google Scholar 

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23(5), 615–627.

    CAS  Google Scholar 

  • Stolz, J. F., Basu, P., & Oremland, R. S. (2002). Microbial transformation of elements: the case of arsenic and selenium. International Microbiology, 5, 201–207.

    CAS  Google Scholar 

  • Stolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. Annual Review of Microbiology, 60, 107–130.

    CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions- a review. Bioresource Technology, 99(14), 6017–6027.

    CAS  Google Scholar 

  • Suhendrayatna, Ohki, A., Kuroiwa, T., & Maeda, S. (1999). Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite. Applied Organometallic Chemmistry, 13(2), 127–133.

    CAS  Google Scholar 

  • Suttigarn, A., & Wang, Y.-T. (2005). Arsenite oxidation by Alcaligenes faecalis strain O1201. Journal of Environmental Engineering, 131(9), 1293–1301.

    CAS  Google Scholar 

  • Taboada-de la Calzada, A., Villa-Lojo, M. C., Beceiro-González, E., Alonso-Rodríguez, E., & Prada-Rodríguez, D. (1999). Accumulation of Arsenic(III) by Chlorella vulgaris. Applied Organometallic Chemmistry, 13(3), 159–162.

    Google Scholar 

  • Takimura, O., Fuse, H., Murakami, K., Kamimura, K., & Yamaoka, Y. (1996). Uptake and reduction of arsenate by Dunaliella sp. Applied Organometallic Chemistry, 10(9), 753–756.

    CAS  Google Scholar 

  • Tamaki, S., & Frankenberger, W. T., Jr. (1992). Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 124, 79–110.

    CAS  Google Scholar 

  • Thomas, D. J., Waters, S. B., & Styblo, M. (2004). Elucidating the pathway for arsenic methylation. Toxicology and Applied Pharmacology, 198(3), 319–326.

    CAS  Google Scholar 

  • Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opnion in Biotechnology, 20(6), 659–667.

    CAS  Google Scholar 

  • Turner, A. W. (1954). Bacterial oxidation of arsenite. I. Description of bacteria isolated from arsenical cattle-dipping fluids. Australian Journal of Biological Sciences, 7(4), 452–476.

    CAS  Google Scholar 

  • Urík, M., Čerňanský, S., Ševc, J., Šimonovičová, A., & Littera, P. (2007). Biovolatilization of arsenic by different fungal strains. Water, Air, and Soil Pollution, 186(1–4), 337–342.

    Google Scholar 

  • Vala, A. K. (2010). Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresource Technology, 101(7), 2565–2567.

    CAS  Google Scholar 

  • Valenzuela, C., Campos, V. L., Yañez, J., Zaror, C. A., & Mondaca, M. A. (2009). solation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile. Bulletin of Environmental Contamination and Toxicology, 82(5), 593–596.

    CAS  Google Scholar 

  • Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    CAS  Google Scholar 

  • Visoottiviseth, P., & Ahmed, F. (2008). Technology for remediation and disposal of arsenic. In: D.M. Whitacre (Ed.), Reviews of Environmental Contamination Volume 197 (pp.77–128), Berlin: Springer.

  • Wan, J., Klein, J., Simon, S., Joulian, C., Dictor, M. C., Deluchat, V., et al. (2010). AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand. Water Research, 44(17), 5098–5108.

    CAS  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.

    CAS  Google Scholar 

  • Wang, J. P., Qi, L., Moore, M. R., & Ng, J. C. (2002). A review of animal models for the study of arsenic carcinogenesis. Toxicology Letters, 133(1), 17–31.

    CAS  Google Scholar 

  • Wang, N-X., Li, Y., Deng, X-H., Miao, A-J., Ji, R., & Yang, L-Y. (2013). Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Research, 47, 2497–2506.

    Google Scholar 

  • Wang, S., & Mulligan, C. N. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138(3), 459–470.

    CAS  Google Scholar 

  • Wang, S., & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 90(8), 2367–2376.

    CAS  Google Scholar 

  • Wang, Z., Luo, Z., & Yan, C. (2013). Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environmental Science and Pollution Research. doi: 10.1007/s11356-013-1741-7.

  • Weeger, W., Lievremont, D., Perret, M., Lagarde, F., Hubert, J. C., Leroy, M., et al. (1999). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals, 12(2), 141–149.

    CAS  Google Scholar 

  • WHO, (1993). Guidelines for drinking water quality, Volume 1: Recommendations. 2nd edn. Geneva. http://www.who.int/water_sanitation_health/dwq/gdwq2v1/en/ Accessed 6 June 2012.

  • Yin, X.-X., Wang, L. H., Bai, R., Huang, H., & Sun, G.-X. (2012). Accumulation and transformation of arsenic in the blue-green alga Synechocystis sp. PCC6803. Water, Air, and Soil Pollution, 223(3), 1183–1190.

    CAS  Google Scholar 

  • Yoon, I.-H., Chang, J.-S., Lee, J.-H., & Kim, K.-W. (2009). Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea. Environmental Geochemistry and Health, 31(1), 109–117.

    CAS  Google Scholar 

  • Zargar, K., Hoeft, S., Oremland, R., & Saltikov, C. W. (2010). Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. Journal of Bacteriology, 192(14), 3755–3762.

    CAS  Google Scholar 

  • Zhang, S-Y., Sun, G-X., Yin, X-X., Rensing, C., & Zhu, Y-G. (2013). Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere. http://dx.doi.org/10.1016/j.chemosphere.2013.04.063.

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34(22), 4747–4753.

    CAS  Google Scholar 

  • Zouboulis, A. I., & Katsoyiannis, I. A. (2005). Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environment International, 31, 213–219.

    Google Scholar 

Download references

Acknowledgments

M.M. Bahar gratefully acknowledges the Government of Australia for providing International Postgraduate Research Scholarship (IPRS) and the University of South Australia for Postgraduate Award (USAPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallavarapu Megharaj.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahar, M.M., Megharaj, M. & Naidu, R. Bioremediation of Arsenic-Contaminated Water: Recent Advances and Future Prospects. Water Air Soil Pollut 224, 1722 (2013). https://doi.org/10.1007/s11270-013-1722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1722-y

Keywords

Navigation