Skip to main content
Log in

Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Histochemical and biochemical approaches were used to investigate the phytotoxicity induced by microcystin-LR (MC-LR) in the shoots of Brassica rapa seedlings. MC-LR exposure was able to induce oxidative stress by triggering the over-generation of reactive oxygen species (ROS) including superoxide anion radical (O2 ) and hydrogen peroxide (H2O2) in the shoots of B. rapa. MC-LR exposure led to the significant increase in the concentration of endogenous nitric oxide (NO) in B. rapa. However, such increase was completely suppressed by the treatment with nitrate reductase (NR) inhibitor NaN3, while l-NMMA, a NO synthase (NOS) inhibitor, had only slight effect on the content of endogenous NO in MC-LR-treated plant. These data suggested that NR-dependent pathway was the main source for endogenous NO generation under MC-LR stress. Afterwards, treatment with NaN3 reduced the ROS generation, lipid peroxidation, and loss of membrane integrity in MC-LR-treated plant. MC-LR stress induced the increase in the expression of superoxide dismutase, ascorbate peroxidase, and catalase. However, such an effect could be reversed by the treatment with NaN3. These results indicate that NR-dependent NO production mediates MC-LR-induced oxidative stress by triggering the over-generation of ROS in B. rapa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, M. B., Vajpayee, P., Tripathi, R. D., Rai, U. N., Kumar, A., et al. (2000). Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin of Environmental Contamination and Toxicology, 65, 573–582.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Arasimowicz, M., & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Science, 172, 876–887.

    Article  CAS  Google Scholar 

  • Beers, R. F., Jr., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133–140.

    CAS  Google Scholar 

  • Besson-Bard, A., Pugin, A., & Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 59, 21–39.

    Article  CAS  Google Scholar 

  • Besson-Bard, A., Gravot, A., Richaud, P., Auroy, P., Duc, C., et al. (2009). Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology, 149, 1302–1315.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal, 45, 113–122.

    Article  CAS  Google Scholar 

  • Chen, J., Song, L., Dai, J., Gan, N., & Liu, Z. (2004). Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon, 43, 393–400.

    Article  CAS  Google Scholar 

  • Chen, J., Shiyab, S., Han, F. X., Monts, D. L., Waggoner, C. A., et al. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110–121.

    Article  CAS  Google Scholar 

  • Chen, J., Dai, J., Zhang, H., Wang, C., Zhou, G., et al. (2010). Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Ecotoxicology, 19, 796–803.

    Article  CAS  Google Scholar 

  • Chen, J., Han, F. X., Wang, F., Zhang, H. Q., & Shi, Z. Q. (2012). Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicology and Environmental Safety, 76, 193–199.

    Article  CAS  Google Scholar 

  • Corpas, F. J., Palma, J. M., Leterrier, M., del Río, L. A., & Barroso, J. B. (2009). Nitric oxide and abiotic stress in higher plants. In S. Hayat, M. Mori, J. Pichtel, & A. Ahmad (Eds.), Nitric oxide in plant physiology (pp. 51–63). Weinheim: Wiley-VCH GmbH & Co. KGaA.

    Chapter  Google Scholar 

  • Crush, J. R., Briggs, L. R., Sprosen, J. M., & Nichols, S. N. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environmental Toxicology, 23, 246–252.

    Article  CAS  Google Scholar 

  • de Pinto, M. C., Tomassi, F., & de Gara, L. (2002). Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology, 130, 689–708.

    Google Scholar 

  • del Rio, L. A., Sandalio, L. M., Corpas, F. J., Palma, J. M., & Barroso, J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141, 330–335.

    Article  Google Scholar 

  • Delledone, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology, 38, 44–52.

    Google Scholar 

  • Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., et al. (2009). Two-decade reconstruction of algal blooms in China's Lake Taihu. Environmental Science & Technology, 43, 3522–3528.

    Article  CAS  Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422, 442–446.

    Article  CAS  Google Scholar 

  • Frahry, G., & Schopfer, P. (2001). NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta, 212, 175–183.

    Article  CAS  Google Scholar 

  • Gas, E., Flores-Perez, U., Sauret-Gueto, S., & Rodriguez-Concepcion, M. (2009). Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. The Plant Cell, 21, 18–23.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • Guo, L. (2007). Doing battle with the green monster of Taihu Lake. Science, 317, 1166.

    Article  CAS  Google Scholar 

  • Guo, K., Xia, K., & Yang, Z. M. (2008). Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. Journal of Experimental Botany, 59, 3443–3452.

    Article  CAS  Google Scholar 

  • Järvenpää, S., Lundberg-Niinistö, C., Spoof, L., Sjövall, O., Tyystjärvi, E., et al. (2007). Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon, 49, 865–874.

    Article  Google Scholar 

  • Jiang, J., Gu, X., Song, R., Wang, X., & Yang, L. (2011). Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. Journal of Hazardous Materials, 190, 188–196.

    Article  CAS  Google Scholar 

  • Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., et al. (2004). Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiology, 135, 516–529.

    Article  CAS  Google Scholar 

  • Leigh, C., Burford, M. A., Roberts, D. T., & Udy, J. W. (2010). Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Research, 44, 4487–4496.

    Article  CAS  Google Scholar 

  • Martin, M., Colman, M. J. R., Gόez-Casati, D. F., Lamattina, L., & Zabaleta, E. J. (2009). Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Letters, 583, 542–548.

    Article  CAS  Google Scholar 

  • Máthé, C., Beyer, D., Erdődi, F., Serfőző, Z., Székvölgyi, L., et al. (2009). Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. Aquatic Toxicology, 92, 122–130.

    Article  Google Scholar 

  • M-Hamvas, M., Mathe, C., Molnar, E., Vasas, G., Grigorszky, I., et al. (2003). Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L seedlings. Aquatic Toxicology, 62, 1–9.

    Article  CAS  Google Scholar 

  • M-Hamvas, M., Máthé, C., Vasas, G., Jámbrik, K., Papp, M., et al. (2011). Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biologica Hungarica, 61, 35–48.

    Article  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Mittler, R., & Zilinskas, B. A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Analytical Biochemistry, 212, 540–546.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Neill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J., et al. (2008). Nitric oxide evolution and perception. Journal of Experimental Botany, 59, 25–35.

    Article  CAS  Google Scholar 

  • Ono, E., Wong, H. L., Kawasaki, T., Hasegawa, M., Kodama, O., & Shimamoto, K. (2001). Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America, 98, 759–764.

    CAS  Google Scholar 

  • Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 6553–6557.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409, 1739–1745.

    Article  CAS  Google Scholar 

  • Pereira, S., Saker, M., Vale, M., & Vasconcelos, V. (2009). Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bulletin of Environmental Contamination and Toxicology, 83, 81–84.

    Article  CAS  Google Scholar 

  • Peuthert, A., & Pflugmacher, S. (2010). Influence of the cyanotoxin microcystin-LR on tocopherol in Alfalfa seedlings (Medicago sativa). Toxicon, 56, 411–417.

    Article  CAS  Google Scholar 

  • Peuthert, A., Chakrabarti, S., & Pflugmacher, S. (2007). Uptake of microcystins-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environmental Toxicology, 22, 436–442.

    Article  CAS  Google Scholar 

  • Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.

    Article  CAS  Google Scholar 

  • Pflugmacher, S., Jung, K., Lundvall, L., Neumann, S., & Peuthert, A. (2006). Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environmental Toxicology and Chemistry, 25, 2381–2387.

    Article  CAS  Google Scholar 

  • Pflugmacher, S., Aulhorn, M., & Grimm, B. (2007). Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytologist, 175, 482–489.

    Article  CAS  Google Scholar 

  • Pflugmacher, S., Hofmann, J., & Hubner, B. (2007). Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environmental Toxicology and Chemistry, 26, 2710–2716.

    Article  CAS  Google Scholar 

  • Prieto, A., Campos, A., Cameán, A., & Vasconcelos, V. (2011). Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicology and Environmental Safety, 74, 1973–1980.

    Article  CAS  Google Scholar 

  • Rio, L. A., Puppo, A., Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. Rio & A. Puppo (Eds.), Reactive oxygen species in plant signaling, signaling and communication in plants (pp. 113–133). Berlin: Springer.

    Chapter  Google Scholar 

  • Saqrane, S., Ghazali, I. E., Ouahid, Y., Hassni, M. E., Hadrami, I. E., et al. (2007). Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction. Aquatic Toxicology, 83, 284–294.

    Article  CAS  Google Scholar 

  • Torres, M. A., Dangl, J. L., & Jones, J. D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517–522.

    Article  CAS  Google Scholar 

  • Wang, Y. S., & Yang, Z. M. (2005). Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant & Cell Physiology, 46, 1915–1923.

    Article  CAS  Google Scholar 

  • Wang, Z., Xiao, B., Song, L., Wu, X., Zhang, J., et al. (2011). Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology, 20, 803–814.

    Article  CAS  Google Scholar 

  • Welker, M., & von Döhren, H. (2006). Cyanobacterial peptides—Nature's own combinatorial biosynthesis. FEMS Microbiology Reviews, 30, 530–563.

    Article  CAS  Google Scholar 

  • Woodbury, W., Spencer, A. K., & Stahmann, M. A. (1971). An improved procedure using ferricyanide for detecting catalase isoenzymes. Analytical Biochemistry, 44, 301–305.

    Article  CAS  Google Scholar 

  • Xie, S., Pancost, R. D., Wang, Y., Yang, H., Wignall, P. B., et al. (2010). Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 38, 447–450.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., & Matsumoto, H. (2001). Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology, 125, 199–208.

    Article  CAS  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., et al. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.

    Article  Google Scholar 

  • Zhao, M. G., Chen, L., Zhang, L. L., & Zhang, W. H. (2009). Nitric reductase-dependent NO production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 151, 755–767.

    Article  CAS  Google Scholar 

  • Zhou, Z. S., Wang, S. J., & Yang, Z. M. (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere, 70, 1500–1509.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Jiangsu Agricultural Science Innovative Founds [CX(11)4065].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Qi Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhong, Y.M., Zhang, H.Q. et al. Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa . Water Air Soil Pollut 223, 4141–4152 (2012). https://doi.org/10.1007/s11270-012-1180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1180-y

Keywords

Navigation