Skip to main content

Advertisement

Log in

Experimental Investigation and Artificial Neural Network-Based Modeling of Batch Reduction of Hexavalent Chromium by Immobilized Cells of Newly Isolated Strain of Chromium-Resistant Bacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The batch bioreduction of Cr(VI) by the cells of newly isolated chromium-resistant Acinetobacter sp. bacteria, immobilized on glass beads and Ca-alginate beads, was investigated. The rate of reduction and percentage reduction of Cr(VI) decrease with the increase in initial Cr(VI) concentration, indicating the inhibitory effect of Cr(VI). Efficiency of bioreduction can be improved by increasing the bioparticle loading or the initial biomass loading. Glass bioparticles have shown better performance as compared to Ca-alginate bioparticles in terms of batch Cr(VI) reduction achieved and the rate of reduction. Glass beads may be considered as better cell carrier particles for immobilization as compared to Ca-alginate beads. Around 90% reduction of 80 ppm Cr(VI) could be achieved after 24 h with initial biomass loading of 14.6 mg on glass beads. Artificial neural network-based models are developed for prediction of batch Cr(VI) bioreduction using the cells immobilized on glass and Ca-alginate beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 73–79.

    Google Scholar 

  • Aleboyeh, A., Kasiri, M. B., Olya, M. E., & Aleboyeh, H. (2008). Prediction of azo dye decolorization by UV/H 2O using artificial neural networks. Dyes and Pigments, 77, 288–294.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (1998). Standard methods for examination of water and wastewater. American Public Health Association (20th ed.). Washington DC, USA: American Water Works Association and Water pollution Control Federation.

    Google Scholar 

  • Baral, S. S., Das, S. N., & Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 13, 216–222.

    Article  Google Scholar 

  • Basu, M., Bhattacharya, S., & Paul, A. K. (1997). Isolation and characterization of chromium-resistant bacteria from tannery effluents. Bulletin of Environmental Contamination and Toxicology, 58, 535–542.

    Article  CAS  Google Scholar 

  • Baughman, D. R., & Liu, Y. A. (1995). Neural networks in bioprocessing and chemical engineering. New York: Academic.

    Google Scholar 

  • Boareto, A. J. M., De Souza Jr, M. B., Valero, F., & Valdman, B. (2007). A hybrid neural model for the online monitoring of lipase production by Candida rugosa. Journal of Chemical Technology and Biotechnology, 82, 319–327.

    Article  CAS  Google Scholar 

  • De Bruijn, J. P. F., & Mondaca, M. A. (2000). Chromate reduction by Serratia marcescens immobilized on activated carbon. Toxicological and Environmental Chemistry, 76, 125–135.

    Article  Google Scholar 

  • Camargo, F., Benedict, O., Fatima, B., & William, F. (2004). Hexavalent chromium reduction by immobilized cells and the cell-free extract of Bacillus sp. ES 29. Bioremediation Journal, 8, 23–30.

    Article  CAS  Google Scholar 

  • Cervantes, C., Garcia, J. C., Devars, S., Corona, F. G., Tavera, H. L., Guzman, J. C., et al. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335–347.

    Article  CAS  Google Scholar 

  • Chen, L. Z., Nguang, S. K., Chen, X. D., & Li, X. M. (2004). Modeling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms. Biochemical Engineering Journal, 22, 51–61.

    Article  Google Scholar 

  • Coruzzi, G. M., Burga, A. R., Katari, M. S., & Gutierrez, R. A. (2009). Systems biology: Principles and applications in plant research. In G. M. Coruzzi & R. A. Gutierrez (Eds.), Annual plant reviews (Plant Systems Biology, Vol. 35, pp. 3–40). United Kingdom: Wiley Blackwell.

    Google Scholar 

  • Dermou, E., Velissariou, A., Xenos, D., & Vayenas, D. V. (2007). Biological removal of hexavalent chromium in trickling filters operating with different filter media types. Desalination, 211(1–3), 156–163.

    Article  CAS  Google Scholar 

  • Devaprasath, P. M., Solomon, J. S., & Thomas, B. V. (2007). Removal of Cr(VI) from aqueous solution using natural plant material. Journal of Applied Sciences in Environmental Sanitation, 2(3), 77–83.

    Google Scholar 

  • Fagundes-Klen, M. R., Ferri, P., Martins, T. D., Tavares, C. R. G., & Silva, E. A. (2007). Equilibrium study of the binary mixture of cadmium–zinc ions biosorption by the Sargassum lipendula species using adsorption isotherm models and neural network. Biochemical Engineering Journal, 34, 136–146.

    Article  CAS  Google Scholar 

  • Francisco, R., Alpoim, M. C., & Morais, P. V. (2002). Diversity of chromium resistant and -reducing bacteria in a chromium-contaminated activated sludge. Journal of Applied Microbiology, 92, 837–843.

    Article  CAS  Google Scholar 

  • Gago, J., Martinez-Nunez, L., Landin, M., & Gallego, P. P. (2010). Artificial neural networks as an alternative to the traditional statistical methodology in plant research. Journal of Plant Physiology, 167, 23–27.

    Article  CAS  Google Scholar 

  • Guegan, J. F., Lek, S., & Oberdoff, T. (1998). Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature, 391, 382–384.

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  • Humphries, A. C., Mikheenko, I. P., & Macaskie, L. E. (2006). Chromate reduction by immobilized palladized sulfate-reducing bacteria. Biotechnology and Bioengineering, 94, 81–90.

    Article  CAS  Google Scholar 

  • James, B. R., & Bartlett, R. (1983). Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. Journal of Environmental Quality, 12, 173–176.

    Article  CAS  Google Scholar 

  • Karim, M. N., Yoshida, T., Rivera, S. L., Saucedo, V., Eikens, B., & Oh, G. (1997). Global and local neural network models in biotechnology: Application to different cultivation processes. Journal of Fermentation and Bioengineering, 83(1), 1–11.

    Article  CAS  Google Scholar 

  • Kathiravan, M. N., Karthiga Rani, R., Karthick, R., & Muthukumar, K. (2010). Mass transfer studies on the reduction of Cr(VI) using calcium alginate immobilized Bacillus sp. in packed bed reactor. Bioresource Technology, 101(3), 853–858.

    Article  CAS  Google Scholar 

  • Kim, J. H., Oh, K. K., Lee, S. T., Kim, S. W., & Hong, S. I. (2002). Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochemistry, 37, 1367–1373.

    Article  CAS  Google Scholar 

  • Kinnari, M., Desai, C., Lal, S., Patel, K., & Patel, B. (2010). Hexavalent chromium reduction by Staphylococcus sp. isolated from Cr (VI) contaminated land fill. International Journal of Biotechnology and Biochemistry, 6(1), 117–129.

    Google Scholar 

  • Konovalova, V. V., Dmytrenko, G. M., Nigmatullin, R. R., Bryk, M. T., & Gvozdyak, P. T. (2003). Chromium (VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology, 33(2), 899–907.

    Article  CAS  Google Scholar 

  • Li, H., Li, P., Hua, T., Zhang, Y., Xiong, X., & Gong, Z. (2005). Bioremediation of contaminated surface water by immobilized Micrococcus roseus. Environmental Technology, 26(8), 931–939.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1995). Microbial reduction of iron, manganese, and other metals. Advances in Agronomy, 54, 175–231.

    Article  CAS  Google Scholar 

  • Massimo, D. I., Willis, M. J., & Monteague, G. A. (1991). Bioprocess model building using artificial neural networks. Bioprocess Engineering, 7, 77–82.

    Google Scholar 

  • Meyer, A., & Wallis, F. M. (1997). Development of microbial biofilms on various surfaces for the treatment of heavy metal containing effluents. Biotechnology Techniques, 11(12), 859–863.

    Article  CAS  Google Scholar 

  • Morales, D. K., Ocampo, W., & Zambrano, M. M. (2007). Efficient removal of hexavalent chromium by a tolerant Streptomyces sp affected by the toxic effect of metal exposure. Journal of Applied Microbiology, 103(6), 2704–2712.

    Article  CAS  Google Scholar 

  • Munjal, N., & Sawhney, S. K. (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30(5), 613–619.

    Article  CAS  Google Scholar 

  • O’Brien, T. J., Ceryak, S., & Patierno, S. R. (2003). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutation Research, 533(1–2), 33–36.

    Google Scholar 

  • Pattanapipitpasal, P., Brown, N. L., & Macaskie, L. E. (2001). Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)—contaminated site. Applied Microbiology and Biotechnology, 57, 257–26.

    Article  Google Scholar 

  • Poopal, A. C., & Laxman, R. S. (2008). Chromate reduction by PVA-alginate immobilized Streptomyces griseus in a bioreactor. Biotechnology Letters, 31(1), 71–76.

    Article  Google Scholar 

  • Raicevic, V., Golic, Z., Lalevic, B., Jovanovic, L., Kikovic, D., & Mladenovic, S. A. (2010). Isolation of chromium resistant bacteria from a former bauxite mine area and their capacity for Cr (VI) reduction. African Journal of Biotechnology, 9(40), 6727–6732.

    CAS  Google Scholar 

  • Shakoori, A. R., Rehman, A., & Riaz, U. H. (2004). Multiple metal resistance in the ciliate protozoan, Vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bulletin of Environmental Contamination and Toxicology, 72(5), 1046–1051.

    Article  CAS  Google Scholar 

  • Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolate from effluents of tanneries. Applied Microbiology and Biotechnology, 53, 348–351.

    Article  CAS  Google Scholar 

  • Shetty, K. V., Kalifathulla, I., & Srinikethan, G. (2007). Performance of a pulsed plate bioreactor for biodegradation of phenol. Journal of Hazardous Materials, 140(1–2), 346–352.

    Article  CAS  Google Scholar 

  • Shetty, K. V., Nandennavar, S., & Srinikethan, G. (2008). Artificial neural networks model for the prediction of steady state phenol biodegradation in a pulsed plate bioreactor. Journal of Chemical Technology and Biotechnology, 83(9), 1181–1189.

    Article  CAS  Google Scholar 

  • Shuler, M. L., & Kargi, F. (1992). Bioprocess engineering: Basic concepts. India: Prentice Hall.

    Google Scholar 

  • Syu, M. J., & Hou, C. L. (1996). A neural network study on dynamic identification of a fermentation system. Bioprocess Engineering, 17, 203–213.

    Article  Google Scholar 

  • Teissier, P., Perret, B., & Latrile, E. (1996). Yeast concentration estimation and prediction with static and dynamic neural network models in batch cultures. Bioprocess Engineering, 14, 231–235.

    Article  CAS  Google Scholar 

  • Trumble, J. T., & Jensen, P. D. (2004). Ovipositional response, developmental effects and toxicity of hexavalent chromium to Megaselia scalaris, a terrestrial detritivore. Archives of Environmental Contamination and Toxicology, 46, 372–376.

    Article  CAS  Google Scholar 

  • Venitt, S., & Levy, L. S. (1974). Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature, London, 250, 493–495.

    Article  CAS  Google Scholar 

  • Yang, J., He, M., & Wang, G. (2009). Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World Journal of Microbiology and Biotechnology, 25(9), 1579–1587.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Shetty K..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty K., V., L., N., Rao, S.N. et al. Experimental Investigation and Artificial Neural Network-Based Modeling of Batch Reduction of Hexavalent Chromium by Immobilized Cells of Newly Isolated Strain of Chromium-Resistant Bacteria. Water Air Soil Pollut 223, 1877–1893 (2012). https://doi.org/10.1007/s11270-011-0992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0992-5

Keywords

Navigation