Skip to main content

Advertisement

Log in

Fate of Macronutrients in Water Treatment of Digestate Using Vibrating Reversed Osmosis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate and recycle valuable nutrients coming from manure and digestate processing. Membrane filtration is a suitable technology to separate valuable nutrients in easily transportable concentrates which could potentially be re-used as green fertilizers, in the meantime producing high quality water. However, traditional membrane filtration systems often suffer technical problems in waste stream treatment. The aim of this study was to evaluate the performance of vibratory shear enhanced processing (VSEP) in the removal of macronutrients (N, P, K, Na, Ca, Mg) from the liquid fraction of digestates, reducing their concentrations down to dischargeable/re-usable water. In addition, the re-use potential of VSEP-concentrates as sustainable substitutes for fossil-based mineral fertilizers was evaluated. Removal efficiencies for N and P by two VSEP filtration steps were high, though not sufficient to continuously reach the Flemish legislation criteria for discharge into surface waters (15 mg N l−1 and 2 mg P l−1). Additional purification can occur in a subsequent lagoon, yet further optimization of the VSEP filtration system is advised. Furthermore, concentrates produced by one membrane filtration step showed potential as N–K fertilizer with an economic value of €6.3 ± 1.1 t−1 fresh weight (FW). Further research is, however, required to evaluate the impact on crop production and soil quality by application of these new potential green fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akoum, O., Jaffrin, M. Y., & Ding, L. H. (2005). Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module. Journal of Membrane Science, 247(1–2), 211–220.

    Article  CAS  Google Scholar 

  • Atkinson, S. (2005). Vibratory membrane filtration system treats hog manure. Membrane Technology, 2005(1), 10–11.

    Article  Google Scholar 

  • Bian, R., Yamamoto, K., & Watanabe, Y. (2000). The effect of shear rate on controlling the concentration polarization and membrane fouling. Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, 1, 421–432.

    Google Scholar 

  • Bilstad, T., Madland, M., Espedal, E., & Hanssen, P. H. (1992). Membrane separation of raw and anaerobically digested pig manure. Water Science and Technology, 25, 19–26.

    CAS  Google Scholar 

  • Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. Lancaster: Technomic Pub.

    Google Scholar 

  • Culkin, B., Plotkin, A., & Monroe, M. (1998). Solve membrane fouling problems with high-shear filtration. Chemical Engineering Progress, 94(1), 29–33.

    CAS  Google Scholar 

  • Europe, F. (2009). Forecast of food, farming and fertilizer use in the European Union 2009–2019. Brussels: European Fertilizer Manufacturers Association.

    Google Scholar 

  • FEA. (2010). Prognose on renewable energy for 2020. Brussels: Flemish Energy Agency.

    Google Scholar 

  • Fehrenbach, H., Giegrich, J., Reinhardt, G., Schmitz, J., Sayer, U., Gretz, M., et al. (2008). Criteria for a sustainable use of bio-energy on a global scale. Germany: Federal Environment Agency.

    Google Scholar 

  • Frappart, M., Jaffrin, M. Y., Ding, L. H., & Espina, V. (2008). Effect of vibration frequency and membrane shear rate on nanofiltration of diluted milk, using a vibratory dynamic filtration system. Separation and Purification Technology, 62(1), 212–221.

    Article  CAS  Google Scholar 

  • Gagliardo, P., Samer, A., Rodes, T., & Adam, O. (1998). Water repurification via reversed osmosis. Desalination, 117(1–3), 73–83.

    Article  CAS  Google Scholar 

  • Hillel, D. (2008). Soil in the environment. Crucible of terrestrial life. New York: Academia Press.

    Google Scholar 

  • Hjorth, M., Christensen, K. V., Christensen, M. L., & Sommer, S. G. (2010). Solid–liquid separation of animal slurry in theory and practice. A review. Agronomy for Sustainable Development, 30, 153–180.

    Article  CAS  Google Scholar 

  • Johnson, G., Culkin, B., & Stowell, L. (2004). Membrane filtration of manure wastewater. A comparison of conventional treatment methods and VSEP, a vibratory RO membrane system. Emeryville: New Logic Research.

    Google Scholar 

  • Kertesz, S., Beszedes, S., Laszlo, Z., Szabo, G., & Hodur, C. (2010). Nanofiltration and reverse osmosis of pig manure: comparison of results from vibratory and classical modules. Desalination and Water Treatment, 14(1–3), 233–238.

    Article  CAS  Google Scholar 

  • Lemmens, E., Ceulemans, J., Elslander, H., Vanassche, S., Brauns, E., & Vrancken, K. (2007). Best available techniques (BAT) for animal manure processing. Ghent: Academia Press.

    Google Scholar 

  • Masse, L., Masse, D. I., & Pellerin, Y. (2007). The use of membranes for the treatment of manure: a critical review. Biosystems Engineering, 98(4), 371–380.

    Article  Google Scholar 

  • Melse, R., & Verdoes, N. (2002). In dierlijke mest is ook Kalium van belang. Varkens, 16, 18–19.

    Google Scholar 

  • Mira-T. (2010). Flanders Environment Report: Indicator Report. Erembodegem: Flemish Environment Agency.

    Google Scholar 

  • Moral, R., Perez-Espiosa, A., Moreno-Casselles, J., Paredes, C., & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from southeastern Spain. Waste Management, 28(2), 367–371.

    Article  CAS  Google Scholar 

  • New Logic Research Inc. (2008). Membrane filtration of hog manure: A cost-effective and environmentally sound solution. Emeryville: New Logic Research Inc.

  • Öborn, I., Andrist-Rangel, Y., Askekaard, M., Grant, C., Watson, C., & Edwards, A. (2005). Critical aspects of potassium management in agricultural systems. Soil Use and Management, 21, 102–112.

    Google Scholar 

  • Petala, M. D., & Zouboulis, A. I. (2006). Vibratory shear enhanced processing membrane filtration applies for the removal of natural organic matter from surface waters. Journal of Membrane Science, 269(1–2), 1–14.

    Article  CAS  Google Scholar 

  • Roeper, H., Bade, O., Streese-Kleeberg, J., & Stegman, R. (2007). Integrated concept for decentralized wastewater and biowaste treatment—Experiences at the pilot plant stage. In Eleventh International Waste Management and Landfill Symposium. Italy: CISA Publisher.

  • Romheld, V., & Kirkby, E. A. (2010). Research on potassium in agriculture: needs and prospects. Plant and Soil, 335(1–2), 155–180.

    Article  Google Scholar 

  • Ruddock, J., Short, T. D., & Brudenell, K. (2003). Energy integration in ammonia production. Energy and the Environment, Sustainable World, 7, 267–276.

    Google Scholar 

  • Smit, A. L., Bindraban, P. S., Schröder, J. J., Conijn, J. G., & Van Der Meer, H. G. (2009). Phosphorous in agriculture: Global resources, trends and developments. Plant Research International: Wageningen.

    Google Scholar 

  • Tam, L. S., Tang, T. W., Lau, G. N., Sharma, K. N., & Chen, G. H. (2007). A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination, 202(1–3), 106–113.

    Article  CAS  Google Scholar 

  • USEPA. (2004). Guidelines for water reuse. Cincinnati: United States Environmental Protection Agency.

    Google Scholar 

  • Van Ranst, E., Verloo, M., Demeyer, A., & Pauwels, J. M. (1999). Manual for the soil chemistry and fertility laboratory: Analytical methods for soils and plants, equipment and management of consumables. Ghent: Faculty of Agricultural and Applied Biological Sciences.

    Google Scholar 

  • Verlinden, G. (2005). Valorisation of effluents from manure processing. Heverlee: Belgian Service for Soil Science.

    Google Scholar 

  • Vilalba, G., Liu, Y., Schroder, H., & Ayres, R. U. (2008). Global phosphorous flows in the industrial economy from a production perspective. Journal of Industrial Ecology, 12(4), 557–569.

    Article  Google Scholar 

  • Wei, S., & Mark, M. B. (2008). Fouling of RO membranes in a vibratory shear enhanced filtration process (VSEP) system. Journal of Membrane Science, 331(1–2), 11–20.

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr. J. Neri (University of Ghent) for laboratory assistance and Mr. F. Vanden Abeele (Eneco Energy) for technical assistance in the pilot plant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vaneeckhaute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaneeckhaute, C., Meers, E., Michels, E. et al. Fate of Macronutrients in Water Treatment of Digestate Using Vibrating Reversed Osmosis. Water Air Soil Pollut 223, 1593–1603 (2012). https://doi.org/10.1007/s11270-011-0967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0967-6

Keywords

Navigation