Skip to main content
Log in

Potential of Gonium spp. in Synthetic Reactive Dye Removal, Possible Role of Laccases and Stimulation by Triacontanol Hormone

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, Gonium sp. was investigated for possible usage in dye-containing wastewater treatment. Trials were performed in media including triacontanol hormone, Reactive Orange 14, Reactive Red 120, Reactive Black 5, Remazol Brilliant Blue R (RBBR), and also hormone against the controls. Algae could remove RBBR with the highest dye removal percentage (56%) among the tested dyes. The optimum pH was 9 in removing 50 mg L−1 RBBR at a dye removal percentage of 47.1%. The role of laccase activity of Gonium sp. was also investigated. This first attempt in the literature showed the involvement of the enzyme in the algal growth and bioremoval process. In the presence of the plant growth hormone in the culture, the activity showed a steady and significant increase up to nearly sixfold between 5th and 14th days of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuner, E., & Dilek, F. B. (2004). Treatment of tectilon yellow 2 G by Chlorella vulgaris. Process Biochemistry, 39, 623–631.

    Article  CAS  Google Scholar 

  • Bourbonnais, R., & Paice, M. G. (1990). Oxidation of non-phenolic substrates, an expanded role for lactase in lignin biodegradation. FEBS Letters, 267, 99–102.

    Article  CAS  Google Scholar 

  • Chen, X., Yuan, H., Chen, R., Zhu, L., Du, B., Weng, Q., et al. (2002). Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant & Cell Physiology, 43, 869–876.

    Article  CAS  Google Scholar 

  • Couto, R. S., & Herrera, J. T. (2006). Industrial biotechnological applications of laccases: a review. Biotechnology Advances, 24, 500–513.

    Article  Google Scholar 

  • Dilek, F. B., Taplamacioglu, H. M., & Tarlan, E. (1999). Colour and AOX removal from pulping effluents by algae. Applied Microbiology and Biotechnology, 52, 585–591.

    Article  CAS  Google Scholar 

  • Dönmez, G. (2002). Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme and Microbial Technology, 30(3), 363–366.

    Article  Google Scholar 

  • Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Enviromental International, 30, 953–971.

    Article  CAS  Google Scholar 

  • Gianfreda, L., Feng, X., & Jean-Marc, B. (1999). Laccases: a useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–26.

    Article  CAS  Google Scholar 

  • Houtz, R. L., Ries, S. K., & Tolbert, N. E. (1985). Effect of triacontanol on Chlamydomonas. II. specific activity of ribulose-bisphosphate carboxylase/oxygenase, ribulose-bisphosphate concentration, and characteristics of photorespiration. Plant Physiology, 79, 365–370.

    Article  CAS  Google Scholar 

  • Karacakaya, P., Kılıç, N. K., Duygu, E., & Dönmez, G. (2009). Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. Journal of Hazardous Materials, 172, 1635–1639.

    Article  CAS  Google Scholar 

  • Kılıç, N. K., Nielsen, J. L., Yüce, M., & Dönmez, G. (2007). Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 67(4), 826–831.

    Article  Google Scholar 

  • Lansheng, L., Xiuhai, W., Ying, L., Juan, A., Fengmin, L., Xianlong, H. (2008). Allelopathic effects of triacontanol on the growth of marine photosynthetic bacteria. Allelopathy Journal 21, Online ISSN, 0973–5046.

  • Lim, S.-L., Chu, W.-L., & Phang, S.-M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101, 7314–7322.

    Article  CAS  Google Scholar 

  • Lima, S. A. C., Raposo, M. F. J., Castro, P. M. L., & Morais, R. M. (2004). Biodegradation of p-chlorophenol by a microalgae consortium. Water Research, 38(1), 97–102.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., & Schnor, J. L. (2004). Overview of phytotransformation and control of wastes. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation transformation and control of contaminants. New York: Wiley Interscience.

    Google Scholar 

  • Oswald, W. J. (2003). My sixty years in applied algollogy. Journal of Applied Phycology, 15, 99–106.

    Article  CAS  Google Scholar 

  • Palanisami, S., Saha, S. K., & Lakshmanan, U. (2010). Laccase and polyphenol oxidase activities of marine cyanobacteria: a study with Poly R-478 decolourization. World Journal of Microbiology & Biotechnology, 26, 63–69.

    Article  CAS  Google Scholar 

  • Park, C., Lim, J.-S., Lee, Y., Lee, B., Kim, S.-W., Lee, J., et al. (2007). Optimization and morphology for decolorization of reactive black 5 by Funalia trogii. Enzyme and Microbial Technology, 40, 1758–1764.

    Article  CAS  Google Scholar 

  • Pereira, M. J., Resende, P., Azeiteiro, U. M., Oliveira, J., & de Figueiredo, D. R. (2005). Differences in the effects of metals on growth of two freshwater green algae (Pseudokirchneriella subcapitata (Korshikov) Hindak and Gonium pectorale Müller). Bulletin of Environmental Contamination and Toxicology, 75, 515–522.

    Article  CAS  Google Scholar 

  • Ries, S. K., & Stutte, C. A. (1985). Critical regulation of plant growth with triacontanol. Critical Reviews in Plant Science, 2, 239–285.

    Article  CAS  Google Scholar 

  • Rippka, R. (1988). Isolation and purification of Cyanobacteria. Methods in Enzymology, 167, 3–27.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Sadettin, S., & Dönmez, G. (2006). Bioaccumulation of reactive dyes by thermophilic cyanobacteria. Process Biochemistry, 41(4), 836–841.

    Article  CAS  Google Scholar 

  • Saha, P. (2010). Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent. Water, Air, and Soil Pollution, 213, 287–299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gönül Dönmez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kılıç, N.K., Karatay, S.E., Duygu, E. et al. Potential of Gonium spp. in Synthetic Reactive Dye Removal, Possible Role of Laccases and Stimulation by Triacontanol Hormone. Water Air Soil Pollut 222, 297–303 (2011). https://doi.org/10.1007/s11270-011-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0824-7

Keywords

Navigation