Skip to main content
Log in

Removal Capacity of Caffeine, Hormones, and Bisphenol by Aerobic and Anaerobic Sewage Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The number of chemical compounds in sewage and consequently their release into the environment is increasing. Some of them are toxic and many of them are considered endocrine disrupters. Here, the capacity of three wastewater treatment plants (WWTPs) to remove caffeine, hormones and bisphenol-A was investigated. Bisphenol-A and caffeine are highly water-soluble compounds, as opposed to hormones (estradiol, estriol, and ethynilestradiol) which are hydrophobic compounds. In the Sewage Treatment Plant (SWT)1 the sewage is treated by activated sludge process, in the second plant, SWT2, sewage is treated by upflow anaerobic sludge blanket reactors followed by dissolved air flotation, and in the third, SWT3 sewage is treated by stabilization lagoons. The first lagoon is 3.5 m deep, thus facultative and polishment processes occur. It was speculated that there was a difference in efficiency between the three plants in removing micropollutants. Small differences were found in the amounts removed, probably accounted for by retention time. The caffeine and bisphenol-A were almost completely removed, higher than 90% for both compounds (bisphenol-A and caffeine) in all WWTPs. The hormones, however, had a smaller rate of removal, between 70% and 87%. It is suspected that retention time is essential for removal efficiency, together with type of treatment. In fact, the hormones, caffeine, and bisphenol-A found in the environment definitely come from untreated sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen, H., Siegrist, H. R., & Halling-Sørensen, B. (2003). Fate of estrogens in a municipal sewage treatment plant. Environmental Science & Technology, 37(18), 4021–4026.

    Article  CAS  Google Scholar 

  • Boon, N., Pauwels, B., Wille, E. K., Noppe, H., Brabander, H., Van de Wiele, T., et al. (2008). 17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol. Biodegradation, 19, 683–693.

    Article  Google Scholar 

  • Buerge, I., Poiger, T., Muller, M. D., & Buser, H. R. (2006). Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine. Environmental Science & Technology, 40(13), 4096–4102.

    Article  CAS  Google Scholar 

  • Carballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., et al. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39(19), 4797–4807.

    Article  CAS  Google Scholar 

  • Fauser, P., Vikelsoe, J., Sorensen, P. B., & Carlsen, L. (2003). Phthalates, nonylphenols and LAS in an alternately operated wastewater treatment plant—fate modelling based on measured concentrations in wastewater and sludge. Water Research, 37(6), 1288–1295.

    Article  CAS  Google Scholar 

  • Filali-Meknassil, Y., Auriol, M., Adams, C. D., & Surampalli, R. Y. (2007). Quantification of steroid sex hormones using solid-phase extraction followed by liquid chromatography-mass spectrometry. Water Environment Research, 79(6), 687–696.

    Article  Google Scholar 

  • Froehner, S., & Maceno, M. (2009). Assessment of bioaccumulation of biphenyls in the trophic chain of a coastal area of Parana. Brazil. Environmental Monitoring Assessment. doi:10.1007/s10661-009-0884-y.

    Google Scholar 

  • Froehner, S., Souza, D. B., Machado, K. S., & Cordova, E. (2009a). Tracking anthopogenic inputs in Barigüi River. Brazil using biomarkers. Water Air Soil Pollution. doi:10.1007/s11270-009-0220-8.

    Google Scholar 

  • Froehner, S., Machado, K. S., Falcão, F., Monnich, C., & Barbosa, L. C. (2009b). Inputs of domestic and industrial sewage in Upper Iguaçu-Brazil identified by emerging compounds. Water Air Soil Pollution. doi:10.1007/s11270-010-0475-0.

  • Griffith, D. R., Barnes, R. T., & Raymond, P. A. (2009). Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environmental Science Technology, 43(15), 5647–5651.

    Article  CAS  Google Scholar 

  • Haiyan, R., Shulan, J., & ud din Ahmad, N. (2007). Degradation characteristics and metabolic pathway of 17a-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 66(2), 340–346.

    Article  Google Scholar 

  • Halling-Sorensen, B. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36(2), 357–393.

    Article  CAS  Google Scholar 

  • Houtman, J. C., Booij, P., Jover, E., del Rio, D. P., Swart, K., van Velzen, M., et al. (2006). Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere, 65(11), 2244–2252.

    Article  CAS  Google Scholar 

  • IBGE–Brazilian Institute of Statistics and Geography. http://www.ibge.gov.br/home/presidencia/noticias/27032002pnsb.shtm. Accessed on September 2009.

  • Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., & Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental Science & Technology, 32(17), 2498–2506.

    Article  CAS  Google Scholar 

  • Joss, A., Andersen, H., & Ternes, T. A. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimisation. Environmental Science & Technology, 38(11), 3047–3055.

    Article  CAS  Google Scholar 

  • Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., et al. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39(14), 3139–3152.

    Article  CAS  Google Scholar 

  • Kanda, R., Griffin, P., James, H. A., & Fothergill, J. (2003). Pharmaceutical and personal care products in sewage treatment. Journal of Environmental Monitoring, 5(3), 823–830.

    Article  CAS  Google Scholar 

  • Khan, A. A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427(6975), 630–633.

    Article  Google Scholar 

  • Kolpin, D., Furlong, E., Meyer, M., Thurman, E. M., Zaugg, S., Barber, L., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Levine, A. D., & Asano, T. (2004). Recovering sustainable water from wastewater. Environmental Science & Technology, 38(12), 201A–208A.

    Article  CAS  Google Scholar 

  • Meesters, R. J. W., & Schroeder, H. (2002). Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical Chemistry, 74(14), 3566–3574.

    Article  CAS  Google Scholar 

  • Melo, S. A. S., Trovó, A. G., Bautitz, I. R., & Nogueira, R. F. (2009). Degradation of residual pharmaceuticals by advanced oxidation process. Quimica Nova, 32(1), 188–197.

    CAS  Google Scholar 

  • Mes, T., Zeeman, G., & Lettinga, G. (2005). Occurrence and fate of estrone, 17b-estradiol and 17a-ethynylestradiol in STPs for domestic wastewater. Reviews in Environmental Science & Biotechnology, 4(5), 275–311.

    Article  Google Scholar 

  • Papadopoulou-Mourkidou, E., Patsias, J., Papadakis, E., & Koukourikou, A. (2001). Use of an automated on-line SPE-HPLC method to monitor caffeine and selected aniline and phenol compounds in aquatic systems of Macedonia-Thrace, Greece. Fresenius Journal of Analytical Chemistry, 371(4), 491–496.

    Article  CAS  Google Scholar 

  • Radjenovic, J., Petrovic, M., & Barceló, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 387(4), 1365–1377.

    Article  CAS  Google Scholar 

  • Sacca, M. L., Accinelli, C., Fick, J., Lindberg, R., & Olsen, B. (2009). Environmental fate of the antivirus Tamiflu in two aquatic ecosystems. Chemosphere, 75(1), 28–33.

    Article  CAS  Google Scholar 

  • Sankararamakrishnan, N., & Guo, Q. (2005). Chemical tracers as indicator of human fecal coliforms at storm water outfalls. Environmental International, 31(8), 1133–1140.

    Article  CAS  Google Scholar 

  • Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H., & Negele, R. D. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I histological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68(1), 141–150.

    Article  CAS  Google Scholar 

  • Stumm-Zoellinger, E., & Fair, G. M. (1965). Biodegradation of steroid hormones. Journal Water Pollution Control Federation, 37, 1506–1510.

    Google Scholar 

  • Svenson, A., Allard, A. S., & Mats, E. (2003). Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research, 37(18), 4433–4443.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering treatment and reuse (4th ed.). Mc Graw Hill: Metcalf and Eddy Inc. 1819 p.

    Google Scholar 

  • Ternes, T. A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D., & Servos, M. (1999a). Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Science of the Total Environmental, 225(1–2), 81–90.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Kreckel, P., & Mueller, J. (1999b). Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge. Science of the Total Environmental, 225(1–2), 91–95.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Herrman, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38(19), 4075–4084.

    Article  CAS  Google Scholar 

  • Tilton, F., Benson, W. H., & Schlenk, D. (2002). Evaluation of estrogenic activity from a municipal wastewater treatment plant with predominantly domestic input. Aquatic Toxicology, 61(3–4), 211–224.

    Article  CAS  Google Scholar 

  • Vethaak, A. D., Lahr, J., & Kuiper, R. V. (2002). Estrogenic effects in fish in the Netherlands: some preliminary results. Toxicology, 181, 147–150.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to CNPq for financial aid (Grand 577060/2008-2) and the Sanepar (Parana State Sanitation Company) for allowed the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Froehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froehner, S., Piccioni, W., Machado, K.S. et al. Removal Capacity of Caffeine, Hormones, and Bisphenol by Aerobic and Anaerobic Sewage Treatment. Water Air Soil Pollut 216, 463–471 (2011). https://doi.org/10.1007/s11270-010-0545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0545-3

Keywords

Navigation