Skip to main content

Advertisement

Log in

Arsenic Mining Waste in the Catchment Area of the Madrid Detrital Aquifer (Spain)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, elevated arsenic concentrations in groundwater used for drinking water supplies have been recognised in the Madrid Tertiary detrital aquifer. Although only natural causes have been suggested as the source of arsenic, this study aims to highlight that the anthropogenic contribution cannot be disregarded. During the sub-catchment’s areas sampling, we found many geographical sites where natural arsenopyrite [FeAsS] originally encapsulated in pegmatite bodies and quartz veins, was artificially outcropped and dumped out, since mining wastes were scattered and exposed to weathering. Several mineral and ground specimens were collected to analyse its mineralogical and chemical composition by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectrometry and by Environmental Scanning Electron Microscope (ESEM). Both, the abundant existence of secondary phases, such as scorodite [FeAsO4⋅2H2O] and jarosite [KFe3(SO4)2(OH)6], much more soluble than arsenopyrite, and the lixiviation experiments of arsenopyrite in acidic media to simulate acid mine drainage (AMD) conditions, usually found in old mining districts, point to a potential risk of arsenic contamination of surface water bodies, which operate as recharged waters of the aquifer in the studied area. The elemental determination of heavy metals present in ground samples by XRF analyses, reaching up to 1,173 mg kg–1 of copper, 347 mg kg–1 of lead and 113,702 mg kg–1 of arsenic; and the physicochemical and arsenic fractionation studies of soil samples, led us to classify the soil as Spolic Technosol (Toxic). The contamination of the area due to old mining activities could release arsenic to Madrid water supplies; accordingly, additional decontamination studies should be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armienta, M. A., Villasenor, G., Rodriguez, R., Ongley, L. K., & Mango, H. (2001). The role of arsenic-bearing rocks in groundwater pollution at Zimapan Valley. Mexico Environ Geol, 40, 571–581.

    Article  CAS  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Cheng, H. F., Hu, Y. N., Luo, J., Xu, B., & Zhao, J. F. (2009). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials, 165, 13–26.

    Article  CAS  Google Scholar 

  • De Miguel E., Callaba A., Arranz J.C., Cala V., Chacón E., Gallego E., et al. (2002). Determinacion de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en los suelos de la Comunidad de Madrid. (Determination of background levels and reference levels of heavy metals and other trace elements in soils of the Community of Madrid). Instituto Geológico y Minero de España (IGME), Madrid, pp. 167.

  • F.A.O. (2006). World reference base for soil resources: A framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations, Rome, pp. 128.

  • Farias, S. S., Casa, V. A., Vazquez, C., Ferpozzi, L., Pucci, G. N., & Cohen, I. M. (2003). Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Science of the Total Environment, 309, 187–199.

    Article  CAS  Google Scholar 

  • Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6, 1259–1274.

    Article  CAS  Google Scholar 

  • Gomez, J. J., Lillo, J., & Sahun, B. (2006). Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin. Spain Environ Geol, 50, 1151–1170.

    Article  CAS  Google Scholar 

  • Gonzalez del Tanago Chanrai, J., & Bellido, F. (1981). Estudio de los granitos de dos micas y del cortejo pegmatitico asociado en las inmediaciones del Cerro de San Pedro (Madrid) (Study of two-mica granites and associated pegmatite complexes in the Cerro de San Pedro, Madrid). J Iberian Geol, 7, 295–308.

  • Gonzalez del Tanago Chanrai J., Gonzalez del Tanago del Río J. (2002). Minerales y minas de Madrid. (Minerals & Mines of Madrid). Ediciones Mundi-Prensa, Madrid, pp. 160.

  • Hendershot, W. H., & Duquette, M. A. (1986). Simple barium-chloride method for determining cation-exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50, 605–608.

    Article  Google Scholar 

  • Hernandez Garcia M.E. (1999). Estudio hidrogeologico, hidrogeoquimico y de contaminación del acuifero detritico Terciario en las areas urbana y periurbana de la Villa de Madrid (Hydrogeological, hydrogeochemical and pollution study of the Tertiary detrital aquifer in urban and peri-urban areas of the Madrid City) Tesis Doctoral Ed. Universidad Complutense Madrid, pp. 500.

  • Hernandez Garcia, M. E., & Fernandez Ruiz, L. (2002). Presencia de arsenico de origen natural en las aguas subterraneas del acuífero detrítico del Terciario de Madrid (Presence of naturally occurring arsenic in groundwater of Madrid Tertiary detrital aquifer). Boletín Geologico y Minero, 113(2), 119–130.

    Google Scholar 

  • Hernandez Garcia, M. E., & Custodio, E. (2004). Natural baseline quality of Madrid Tertiary detrital aquifer groundwater (Spain): A basis for aquifer management. Environmental Geology, 46, 173–188.

    Google Scholar 

  • Hudson-Edwards, K. A., Houghton, S. L., & Osborn, A. (2004). Extraction and analysis of arsenic in soils and sediments. Trends in Analytical Chemistry, 23, 745–752.

    Article  CAS  Google Scholar 

  • Jimenez, R., Jorda, L., Jordá, R., & Prado, P. (2004). Mineria metalica en Madrid (Metal mining in Madrid). Revista Bocamina, 14, 53–89.

    Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H., Jr. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419.

    Article  CAS  Google Scholar 

  • Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478, 111–118.

    Article  CAS  Google Scholar 

  • Müller, K., Daus, B., Morgenstern, P., & Wennrich, R. (2007). Mobilization of antimony and arsenic in soil and sediment samples: Evaluation of different leaching procedures. Water, Air, and Soil Pollution, 183, 427–436.

    Article  Google Scholar 

  • Nieto, P., Custodio, E., & Manzano, M. (2005). Baseline groundwater quality: A European approach. Environmental Science & Policy, 8, 399–409.

    Article  Google Scholar 

  • Oliveira, V., Sarmiento, A. M., Gomez-Ariza, J. L., Nieto, J. M., & Sanchez-Rodas, D. (2006). New preservation method for inorganic arsenic speciation in acid mine drainage samples. Talanta, 69, 1182–1189.

    Article  CAS  Google Scholar 

  • Orden 2770/2006 de 11 de agosto, de la Consejería de Medio Ambiente y Ordenación del Territorio, por la que se procede al establecimiento de niveles genéricos de referencia de metales pesados y otros elementos traza en suelos contaminados de la Comunidad de Madrid (Standards of the Ministry of Environment and Spatial Planning to establish generic reference levels of heavy metals and other trace elements in contaminated soils of the Community of Madrid). Spain.

  • O'Shea, B., Jankowski, J., & Sammut, J. (2007). The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia. Science of the Total Environment, 379, 151–166.

    Article  Google Scholar 

  • Reynolds, J. G., Naylor, D. V., & Fendorf, S. E. (1999). Arsenic sorption in phosphate amended soils during flooding and subsequent aeration. Soil Science Society of America Journal, 63, 1149–1156.

    Article  CAS  Google Scholar 

  • Redman, A. D., Macalady, D., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology, 36, 2889–2896.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Schippers, A., Jozsa, P. G., Kovacs, Z. M., Jelea, M., & Sand, W. (2001). Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. Waste Manage (Oxford), 21, 139–146.

    Article  CAS  Google Scholar 

  • Sidle, W. C., Wotten, B., & Murphy, E. (2001). Provenance of geogenic arsenic in the Goose River basin, Maine. USA Environ Geol, 41, 62–73.

    Article  CAS  Google Scholar 

  • Stuben D., Berner Z., Chandrasekharam D., Karmakar J. (2001). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions. 10th International Symposium on Water–Rock Interaction, Billasimius, Italy, pp. 1417–1434.

  • Thanabalasingam, P., & Pickering, W. F. (1986). Arsenic sorption by humic acids. Environmental Pollution, 12, 223–246.

    Google Scholar 

  • Thomas, G. W. (1982). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis. part 2. Chemical and microbiological properties (pp. 159–164). Madison: American Society of Agronomy.

    Google Scholar 

  • Van Herreweghe, S., Swennen, R., Vandecasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122(3), 323–342.

    Article  Google Scholar 

  • Voigt, D. E., Brantle, S. L., & Hennet, R. J. C. (1996). Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11, 633–643.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, A. I. (1934). Organic matter was determined by wet digestion: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, S. L., & Mulligan, C. N. (2006a). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138, 459–470.

    Article  CAS  Google Scholar 

  • Wang, S., & Mulligan, C. N. (2006b). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138, 459–470.

    Article  CAS  Google Scholar 

  • Wang, S., & Mulligan, C. N. (2008). Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International, 34, 867–879.

    Article  CAS  Google Scholar 

  • Yunmei, Y., Yongxuan, Z., Williams-Jones, A. E., Zhenmin, G., & Dexian, L. (2004). A kinetic study of the oxidation of arsenopyrite in acidic solutions: Implications for the environment. Applied Geochemistry, 19, 435–444.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Spanish project C.I.C.Y.T. CGL2009-09247 and the FPI Research Fellowship of the Spanish Ministry of Science and Innovation. Thanks are also due to Martin Fernandez-Hernan for his valuable help in the sample collection in the Colmenar Viejo area. We are grateful to Rafael Gonzalez Martin for the XRD and XRF analyses, and to Octavio Cedenilla Martin for the ICP-AES analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Garcia-Guinea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recio-Vazquez, L., Garcia-Guinea, J., Carral, P. et al. Arsenic Mining Waste in the Catchment Area of the Madrid Detrital Aquifer (Spain). Water Air Soil Pollut 214, 307–320 (2011). https://doi.org/10.1007/s11270-010-0425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0425-x

Keywords

Navigation