Skip to main content
Log in

Cadmium Accumulation and Translocation in Four Emergent Wetland Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Emergent wetland plant species may exhibit different capacity for phytoremediation when used in constructed wetlands. To evaluate cadmium (Cd) remediation capacity of four emergent wetland species [Baumea juncea (R.Br.) Palla, Baumea articulata (R.Br.) S.T. Blake, Schoenoplectus validus (M.Vahl) A. & D.Löve, and Juncus subsecundus N.A. Wakef.], a glasshouse experiment was conducted in hydroponics to investigate the effects of Cd (0, 5, 10, and 20 mg L−1) on plant growth and Cd uptake and translocation as well as uptake of other nutrients after 14 days. The relative growth rates of the three species changed little in various Cd treatments, but was severely inhibited for B. juncea at 20 mg Cd per liter treatment. Hence, the Cd tolerance index (root length in Cd treatment vs. control) was significantly lower in B. juncea compared to other species. Among the species, the highest concentration of Cd was in the roots of J. subsecundus, followed by S. validus, B. articulata, and B. juncea, while the lowest concentration of Cd was in the S. validus shoots. Of all the species, J. subsecundus had the highest bioconcentration factor (BCF) in shoots, whereas S. validus and B. juncea had the lowest BCF in rhizomes and roots, respectively. The translocation factor was significantly lower in S. validus compared to the other species. J. subsecundus had a higher Cd accumulation rate than the other species regardless of the Cd supply. The lowest allocation of Cd in shoots was recorded for S. validus and in roots for B. juncea. The concentrations of other elements (P, S, Ca, Fe, Cu, and Zn) in shoots decreased with Cd additions, but the interactions between Cd and other elements in roots varied with the different species. These results indicate that the four wetland species have good tolerance to Cd stress (except B. juncea at high Cd exposure), varying in Cd accumulation and translocation in tissues. These properties need to be taken into account when selecting species for wetlands constructed for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait Ali, N., Bernal, M. P., & Ater, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.

    Article  Google Scholar 

  • Ait Ali, N., Bernal, M. P., & Ater, M. (2004). Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany, 80, 163–176.

    Article  CAS  Google Scholar 

  • Alcantara, E., Romera, F. J., Canete, M., & De la Guardia, M. D. (1994). Effects of heavy metals on both induction and function of root Fe(lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 45, 1893–1898.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Whiting, S. N. (2002). In search of the holy grail—a further step in understanding metal hyperaccumulation? New Phytologist, 155, 1–7.

    Article  Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation, and Recycling, 11, 41–49.

    Article  Google Scholar 

  • Bassett, J., Denney, R. C., Jeffery, G. H., & Mendham, J. (1978). Vogel’s textbook of quantitative inorganic analysis including elementary instrumental analysis (4th ed.). London: Longman.

    Google Scholar 

  • Batty, L. C., & Younger, P. L. (2004). Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: Effects of metal and nutrient uptake. Environmental Pollution, 132, 85–93.

    Article  CAS  Google Scholar 

  • Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17, 1677–0420.

    Article  Google Scholar 

  • Brisson, J., & Chazarenc, F. (2009). Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Science of The Total Environment, 407, 3923–3930.

    Article  CAS  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35, 11–17.

    Article  CAS  Google Scholar 

  • Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., et al. (2007). Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 67, 2082–2088.

    Article  CAS  Google Scholar 

  • Cheng, S., Ren, F., Grosse, W., & Wu, Z. (2002). Effects of cadmium on chlorophyll content, photochemical efficiency, and photosynthetic intensity of Canna indica Linn. International Journal of Phytoremediation, 4, 239–246.

    Article  CAS  Google Scholar 

  • Coombs, J., Hall, D. O., Long, S. P., & Scurlock, J. M. O. (1985). Techniques in bioproductivity and photosynthesis. Oxford: Pergamon. 298.

    Google Scholar 

  • Department of Water and Swan River Trust (2007). Stormwater management plans, Stormwater Management Manual for Western Australia. Department of Water and Swan River Trust, Perth, Western Australia.

  • Gruber, H., Wiessner, A., Kuschk, P., Kaestner, M., & Appenroth, K. J. (2008). Physiological responses of Juncus effusus (rush) to chromium and relevance for wastewater treatment in constructed wetlands. International Journal of Phytoremediation, 10, 79–90.

    Article  CAS  Google Scholar 

  • Hagemeyer, J., & Breckle, S. W. (1996). Growth under trace element stress. In Y. Waisel & U. Kafkafi (Eds.), Plant root: The hidden half (pp. 415–433). New York: Marcel Dekker.

    Google Scholar 

  • Han, Y. L., Yuan, H. Y., Huang, S. Z., Guo, Z., Xia, B., & Gu, J. (2007). Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology, 16, 557–563.

    Article  CAS  Google Scholar 

  • Jenssen, P., Maehlum, T., & Krogstad, T. (1993). Potential use of constructed wetlands for wastewater treatment in northern environments. Water Science and Technology, 28, 149–157.

    Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. Boca Raton: Lewis.

    Google Scholar 

  • Lee, C. R., Sturgis, T. C., & Landin, M. C. (1981). Heavy metal uptake by marsh plants in hydroponic solution culture. Journal of Plant Nutrition, 3, 139–151.

    Article  CAS  Google Scholar 

  • Meney, K., Pantelic, L., & Hardcastle, K. (2010). Chapter 14: Performance evaluation of a full-scale constructed wetland system providing secondary and tertiary treatment of municipal wastewater—An Australian case study. In J. Nair, C. Furedy, H. Chanakya, & H. Doelle (Eds.), Technologies and management for sustainable biosystems. New York: Nova Science Publishers, Inc. (in press).

    Google Scholar 

  • Obata, H., & Umebayashi, M. (1997). Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. Journal of Plant Nutrition, 20, 97–105.

    Article  CAS  Google Scholar 

  • Otte, M. L. (2001). What is stress to a wetland plant? Environmental and Experimental Botany, 46, 195.

    Article  Google Scholar 

  • Phaenark, C., Pokethitiyook, P., Kruatrachue, M., & Ngernsansaruay, C. (2009). Cd and Zn accumulation in plants from the Padaeng zinc mine area. International Journal of Phytoremediation, 11, 479–495.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.

    Article  CAS  Google Scholar 

  • Read, J., Wevill, T., Fletcher, T., & Deletic, A. (2008). Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Research, 42, 893–902.

    Article  CAS  Google Scholar 

  • Scholz, M., & Lee, B. H. (2005). Constructed wetlands: A review. International Journal of Environmental Studies, 62, 421–447.

    Article  Google Scholar 

  • Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48, 523–544.

    Article  CAS  Google Scholar 

  • Sundaravadivel, M., & Vigneswaran, S. (2001). Constructed wetlands for wastewater treatment. Critical Reviews in Environmental Science and Technology, 31, 351–409.

    Article  CAS  Google Scholar 

  • Vasiliadou, S., & Dordas, C. (2009). Increased concentration of soil cadmium affects on plant growth, dry matter accumulation, Cd, and Zn uptake of different tobacco cultivars (Nicotiana tabacum L.). International Journal of Phytoremediation, 11, 115.

    Article  CAS  Google Scholar 

  • Wallace, A., Romney, E. M., Alexander, G. V., Soufi, S. M., & Patel, P. M. (1977). Some interactions in plants among cadmium, other heavy metals, and chelating agents. Agronomy Journal, 69, 18–20.

    Article  CAS  Google Scholar 

  • Wang, Q., Cui, Y., & Dong, Y. (2002). Phytoremediation of polluted waters potentials and prospects of wetland plants. Acta Biotechnologica, 22, 199–208.

    Article  CAS  Google Scholar 

  • Wang, K. S., Huang, L. C., Lee, H. S., Chen, P. Y., & Chang, S. H. (2008). Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: Effects of cadmium speciation. Chemosphere, 72, 666–672.

    Article  CAS  Google Scholar 

  • Water and Rivers Commission (2001). Using rushes and sedges in revegetation of wetland areas in the south west of WA. Water and Rivers Commission, Perth, Western Australia, Report No. RR 8, 16 pp.

  • Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80, 623–633.

    Article  CAS  Google Scholar 

  • Wong, M. K., Chuah, G. K., Koh, L. L., Ang, K. P., & Hew, C. S. (1984). The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environmental and Experimental Botany, 24, 189–195.

    Article  CAS  Google Scholar 

  • Yang, X., Baligar, V. C., Martens, D. C., & Clark, R. B. (1996). Cadmium effects on influx and transport of mineral nutrients in plant species. Journal of Plant Nutrition, 19, 643–656.

    Article  CAS  Google Scholar 

  • Yim, M. W., & Tam, N. F. Y. (1999). Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activities. Marine Pollution Bulletin, 39, 179–186.

    Article  CAS  Google Scholar 

  • Zacchini, M., Pietrini, F., Scarascia Mugnozza, G., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air and Soil Pollution, 197, 23–34.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhang, Z., Rengel, Z., & Meney, K. (2007a). Removal of nutrients from secondary-treated municipal wastewater in wetland microcosms using ornamental plant species. International Journal of Environment and Waste Management, 1, 363–375.

    Article  CAS  Google Scholar 

  • Zhang, Z., Rengel, Z., & Meney, K. (2007b). Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono- and mixed-culture in wetland microcosms. Water, Air and Soil Pollution, 183, 95–105.

    Article  CAS  Google Scholar 

  • Zhang, Z., Rengel, Z., & Meney, K. (2008). Chapter 7: Nutrition and toxicity of inorganic substances from wastewater in constructed wetlands. In R. E. Russo (Ed.), Wetlands: Ecology, conservation & restoration (pp. 247–269). New York: Nova Science Publishers, Inc.

    Google Scholar 

Download references

Acknowledgments

This work received financial support through Australia Research Council (ARC-linkage Project, LP0883979) and industrial partners (Syrinx Environmental Pty Ltd; Australian Laboratory Services, Perth; Department of Water, Western Australia and King Island Council, Tasmania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zed Rengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Rengel, Z. & Meney, K. Cadmium Accumulation and Translocation in Four Emergent Wetland Species. Water Air Soil Pollut 212, 239–249 (2010). https://doi.org/10.1007/s11270-010-0339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0339-7

Keywords

Navigation