Skip to main content

Advertisement

Log in

Dispersal of Contaminant Metals in the Mining-Affected Danube and Maritsa Drainage Basins, Bulgaria, Eastern Europe

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Metal dispersal in the Danube and Maritsa drainage basins resulting from metal mining activities in Bulgaria has been assessed through the collection of 611 samples of river water, river channel and floodplain sediment, and mine waste from over 218 sites. Concentrations of Cd, Cu, Pb, and Zn in river water were found to be highest in close proximity to locations of Cu and Pb–Zn mining regions in the Maritsa catchment. Downstream dispersal of solute metals in these catchments, and into the River Danube, was found to be limited by physical dilution and a well-buffered pH environment. Dispersal of contaminant metals in channel and floodplain sediment was found to be extensive. Contamination was particularly severe in the Rivers Timok and Iskar (Danube catchment) and the Topolnitsa, Chepelarska, and Arda Rivers (Maritsa catchment) and creates the potential of transboundary dispersal of contaminant metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahams, P. W., & Steigmajer, J. (2003). Soil ingestion by sheep grazing metal enriched floodplain soils of mid-Wales. Environmental Geochemistry and Health, 25, 17–24. doi:10.1023/A:1021217402950.

    Article  CAS  Google Scholar 

  • Allan, R. J. (1988). Mining activities as sources of metals and metalloids to the hydrosphere. In G. Strigel (Ed.), Metals and metalloids in the hydrosphere: impact through mining and industry, and prevention technology (pp. 45–67). Paris: UNESCO.

    Google Scholar 

  • Benvenuti, M., Mascaro, I., Corsini, F., Lattanzi, P., Parrini, P., & Tanelli, G. (1997). Mine waste dumps and heavy metal pollution in abandoned mining district of Bocchegiano (Southern Tuscany, Italy). Environmental Geology, 30, 238–243. doi:10.1007/s002540050152.

    Article  CAS  Google Scholar 

  • Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., et al. (2003a). The solid-state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. doi:10.1016/S0883-2927(03)00078-7.

    Article  CAS  Google Scholar 

  • Bird, G., Brewer, P.A., Macklin, M.G., Balteanu, D., Driga, B., Serban, M., et al. (2003b). The impact and significance of metal mining activities on the environmental quality of Romanian river systems. In CCMESI (Ed.), Proceedings of the First International Conference on Environmental Research and Assessment, Bucharest, Romania (pp. 316–332). University of Bucharest.

  • Bird, G., Macklin, M. G., Brewer, P. A., Balteanu, D., Driga, B., Zaharia, S., et al. (2003c). Environmental impacts of metal mining activities in Romania. In N. Josan, D. Balteanu, P. A. Brewer & M. G. Macklin (Eds.), The environmental and socio-economic impact of industrial tailings ponds, Oradea, Romania (pp. 87–96). University of Oradea.

  • Bird, G., Brewer, P. A., Macklin, M. G., Serban, M., Balteanu, D., & Driga, B. (2005). The magnitude, spatial extent and environmental significance of heavy metal contamination in the Aries river catchment, western Romania: implications for development of the Rosia Montana gold deposit. Journal of Geochemical Exploration, 86, 26–48. doi:10.1016/j.gexplo.2005.02.002.

    Article  CAS  Google Scholar 

  • Bird, G., Brewer, P. A., Macklin, M. G., Serban, M., Balteanu, D., Driga, B., et al. (2008). River system recovery following the Novaţ-Roşu tailings dam failure, Maramureş County, Romania. Applied Geochemistry, 23, 3498–3518. doi:10.1016/j.apgeochem.2008.08.010.

    Article  CAS  Google Scholar 

  • Bird, G., Macklin, M. G., Brewer, P. A., Zaharia, S., Balteanu, D., Driga, B., et al. (2009). Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania. Environmental Geochemistry and Health. doi:10.1007/s10653-009-9259-0.

  • Bogdanov, B. (1982). Bulgaria. In F. W. Dunning, W. Mykura & D. Slater (Eds.), Mineral deposits of Europe. Volume 2: Southeast Europe (pp. 215–232). London: The Mineralogical Society.

    Google Scholar 

  • Brewer, P. A., & Taylor, M. P. (1997). The spatial distribution of heavy metal contaminated sediment across terraced floodplains. Catena, 30, 229–249. doi:10.1016/S0341-8162(97)00017-9.

    Article  CAS  Google Scholar 

  • Brewer, P. A., Macklin, M. G., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2002). Sediment and water quality in Maramures County, northwest Romania, following the January and March 2000 tailings dam failures. Proceedings of the Romanian Academy, Series B: Chemistry, Life Sciences and Geosciences, 4, 41–48.

    Google Scholar 

  • Brewer, P. A., Macklin, M. G., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2003). The tailings dam failures in Maramures County, Romania and their transboundary impacts on the river systems. In W. L. Filho & I. Butorina (Eds.), Approaches to handling environmental problems in the mining and metallurgical regions (pp. 73–83). Boston, MA: Kluwer.

    Google Scholar 

  • Ciszewski, D. (2001). Flood-related changes in heavy metal concentrations within sediments of the Biala Przemsza River. Geomorphology, 40, 205–218. doi:10.1016/S0169-555X(01)00044-7.

    Article  Google Scholar 

  • Davies, B. E., & Lewin, J. (1974). Chronosequences in alluvial soils with special reference to historic lead pollution in Cardiganshire, Wales. Environmental Pollution, 6, 49–57. doi:10.1016/0013-9327(74)90046-9.

    Article  CAS  Google Scholar 

  • Davis, A., Ruby, M. V., & Bergstrom, P. D. (1992). Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environmental Science & Technology, 26, 461–468. doi:10.1021/es00027a002.

    Article  CAS  Google Scholar 

  • Dawson, E. J., & Macklin, M. G. (1998). Speciation of heavy metals on suspended sediment under high flow conditions in the River Aire, West Yorkshire, UK. Hydrological Processes, 12, 1483–1494. doi:10.1002/(SICI)1099-1085(199807)12:9<1483::AID-HYP651>3.0.CO;2-W.

    Article  Google Scholar 

  • Dennis, I., Macklin, M. G., Coulthard, T. J., & Brewer, P. A. (2003). The impact of the October–November 2000 floods on contaminant metal dispersal in the River Swales catchment, North Yorkshire, UK. Hydrological Processes, 17, 1641–1657. doi:10.1002/hyp.1206.

    Article  Google Scholar 

  • Dennis, I. A., Coulthard, T. J., Brewer, P. A., & Macklin, M. G. (2009). The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surface Processes and Landforms, 34, 453–466. doi:10.1002/esp.1762.

    Article  CAS  Google Scholar 

  • Evans, D. (1991). Chemical and physical partitioning in contaminated stream sediments in the River Ystwyth, mid-Wales. Environmental Geochemistry and Health, 13, 84–92. doi:10.1007/BF01734299.

    Article  CAS  Google Scholar 

  • Fuge, R., Pearce, F. M., Pearce, N. J. G., & Perkins, W. T. (1993). Geochemistry of Cd in the secondary environment near abandoned metalliferous mines, Wales. Applied Geochemistry. Supplementary Issue, 2, 29–35.

    CAS  Google Scholar 

  • Gao, Y., & Bradshaw, A. D. (1995). The containment of toxic wastes: II. Metal movement in leachate and drainage at Parc lead–zinc mine, North Wales. Environmental Pollution, 90, 379–382. doi:10.1016/0269-7491(95)00011-F.

    Article  CAS  Google Scholar 

  • Graf, M., Lair, G. J., Zehetner, F., & Gerzabek, M. H. (2007). Geochemical fractions of copper in soil chronosequences of selected European floodplains. Environmental Pollution, 148, 788–796. doi:10.1016/j.envpol.2007.01.035.

    Article  CAS  Google Scholar 

  • Gruiz, K., Muranyi, A., Molnar, M., & Horvath, B. (1998). Risk assessment of heavy metal contamination in Danube sediments from Hungary. Water Science and Technology, 37, 273–281. doi:10.1016/S0273-1223(98)00208-X.

    Article  CAS  Google Scholar 

  • Hall, G. E. M. (1992). Inductively coupled plasma mass spectrometry in geoanalysis. Journal of Geochemical Exploration, 44, 201–249. doi:10.1016/0375-6742(92)90051-9.

    Article  CAS  Google Scholar 

  • Harding, J. P. C., & Witton, B. A. (1981). Accumulation of zinc, cadmium and lead by field populations of Lamanea. Water Research, 15, 301–319. doi:10.1016/0043-1354(81)90034-8.

    Article  CAS  Google Scholar 

  • Herbert, R. B. J. (1994). Metal transport in groundwater contaminated by acid mine drainage. Nordic Hydrology, 25, 193–212.

    CAS  Google Scholar 

  • Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. P. (1999). 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE Engalnd, UK. Hydrological Processes, 13, 1087–1102. doi:10.1002/(SICI)1099-1085(199905)13:7<1087::AID-HYP791>3.0.CO;2-T.

    Article  Google Scholar 

  • Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72, 229–250. doi:10.1016/S0375-6742(01)00164-9.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Macklin, M. G., Jamieson, H. E., Brewer, P. A., Coulthard, T. J., Howard, A. J., et al. (2003). The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rios Agrio-Guadiamar, Aznacollar, Spain. Applied Geochemistry, 18, 221–239. doi:10.1016/S0883-2927(02)00122-1.

    Article  CAS  Google Scholar 

  • ICPDR. (2001). Inventory of potential accidental risk spots in the Danube River Basin (p. 131). Vienna: International Commission for the Protection of the Danube River.

    Google Scholar 

  • ICPDR. (2002). Joint Danube survey, final report (p. 261). Vienna: International Commission for the Protection of the Danube River.

    Google Scholar 

  • Jopony, M., & Young, S. (1993). Assessment of lead availability in soils contaminated by mine spoil. Plant and Soil, 151, 273–278. doi:10.1007/BF00016293.

    Article  CAS  Google Scholar 

  • Jovic, D., Nikolic, V., Vukadinovic, I., & Grzetic, I. (2002). State of mineral resources, mining industry and their impact to the environment in the Federal Republic of Yugoslavia. In Proceedings of the Workshop on Geo- and mining hazards, Hannover (pp. 1–22). Bundesanstalt fur Geowissenschaften und Rohstoffe.

  • Kanurkov, G. (1988). The Fe-ore deposits in Bulgaria. Sofia: Tehnika. (in Bulgarian).

    Google Scholar 

  • Kotnik, J., Horvat, M., Milačič, R., Ščančar, J., Fajon, V., & Križanovski, A. (2003). Heavy metals in the sediment of the Sava River, Slovenia. Geologija, 46, 263–272.

    Google Scholar 

  • Kotsev, T. (2001). Contemporary heavy metal and arsenic river pollution in the ‘Ogosta’ reservoir drainage basin after the end of the mining activities (in Bulgarian). In Natural Potential and Sustainable Development of the Mountain Regions, Proceedings of the Balkan Scientific-Applied Conference, Vratsa, Bulgaria (pp. 415–426).

  • Kundzewicz, Z. W., Ulbrich, U., Brucher, T., Graczyk, D., Kruger, A., Leckebusch, G. C., et al. (2005). Summer floods in central Europe—climate change track? Natural Hazards, 36, 165–189. doi:10.1007/s11069-004-4547-6.

    Article  Google Scholar 

  • Leenaers, H. (1989). The transport of heavy metals during flood events in the polluted River Geul (The Netherlands). Hydrological Processes, 3, 325–338. doi:10.1002/hyp.3360030404.

    Article  Google Scholar 

  • Lewin, J., & Macklin, M. G. (1987). Metal mining and floodplain sedimentation in Britain. In V. Gardiner (Ed.), International Geomorphology 1986: proceedings of the First International Conference on Geomorphology (pp. 1009–1027). Chichester: Wiley.

    Google Scholar 

  • Lewin, J., Davies, B. E., & Wolfenden, P. J. (1977). Interactions between channel change and historic mining sediments. In K. J. Gregory (Ed.), River channel changes (pp. 353–367). Chichester: Wiley.

    Google Scholar 

  • Macklin, M. G. (1985). Flood-plain sedimentation in the upper Axe Valley, Mendip, England. Transactions (Institute of British Geographers), 10, 235–244. doi:10.2307/621826.

    Article  Google Scholar 

  • Macklin, M. G. (1996). Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In M. G. Anderson, D. E. Walling & P. D. Bates (Eds.), Floodplain processes (pp. 441–460). Chichester: Wiley.

    Google Scholar 

  • Macklin, M. G., & Klimek, K. (1992). Dispersal, storage and transformation of metal contaminated alluvium in the upper Vistula basin, southwest Poland. Applied Geography (Sevenoaks, England), 12, 7–30. doi:10.1016/0143-6228(92)90023-G.

    Article  Google Scholar 

  • Macklin, M. G., & Lewin, J. (1989). Sediment transfer and transformation of an alluvial valley floor: the River South Tyne, Northumbria, U.K. Earth Surface Processes and Landforms, 14, 233–246. doi:10.1002/esp.3290140305.

    Article  Google Scholar 

  • Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment: results from selected English and Welsh floodplains. Applied Geochemistry, 9, 689–700. doi:10.1016/0883-2927(94)90028-0.

    Article  CAS  Google Scholar 

  • Macklin, M. G., Brewer, P. A., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., et al. (2003). The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Applied Geochemistry, 18, 241–257. doi:10.1016/S0883-2927(02)00123-3.

    Article  CAS  Google Scholar 

  • Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I., et al. (2006). A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology, 79, 423–447. doi:10.1016/j.geomorph.2006.06.024.

    Article  Google Scholar 

  • Marjanovic, A. (1990). Qualitative and quantitative-analyses of heavy metals in the Danube at the profile situated at the village of Vinca, Yugoslavia. Water Science and Technology, 22, 59–62.

    CAS  Google Scholar 

  • Marron, D. C. (1992). Floodplain storage of mine tailings in the Belle Fourche River system: a sediment budget approach. Earth Surface Processes and Landforms, 17, 675–685. doi:10.1002/esp.3290170704.

    Article  CAS  Google Scholar 

  • Milenkovic, N., Damjanovic, M., & Ristic, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14, 781–787.

    CAS  Google Scholar 

  • Miller, J. R. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of Geochemical Exploration, 58, 101–118. doi:10.1016/S0375-6742(96)00073-8.

    Article  CAS  Google Scholar 

  • Miller, J., Barr, R., Grow, D., Lechler, P., Richardson, D., Waltman, K., et al. (1999). Effects of the 1997 flood on the transport and storage of sediment and mercury within the Carson River valley, west–central Nevada. The Journal of Geology, 107, 313–327. doi:10.1086/314353.

    Article  CAS  Google Scholar 

  • Mutafchiev, I., & Petrunov, R. (1996). Geological genetic models of ore deposit formation in the Panagyurishte-Etropole ore region (pp. 69). Unpublished report for Navan-Chelopech Mining Company, Sofia.

  • Obretenov, N. (2007). Berkovski ore district. In V. Milev, N. Obretenov, V. Georgiev, A. Arizanov, D. Zhelev & I. Bonev (Eds.), The gold deposits in Bulgaria (pp. 69–74). Sofia: Zeyma '93. (in Bulgarian).

    Google Scholar 

  • Odor, L., Wanty, R. B., Horvath, E., & Fugedi, U. (1998). Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary. Journal of Geochemical Exploration, 65, 47–60. doi:10.1016/S0375-6742(98)00056-9.

    Article  CAS  Google Scholar 

  • Oertel, N. (1994). Trend analysis of heavy metal concentration of the suspended matter in the River Danube. Water Science and Technology, 29, 141–143.

    CAS  Google Scholar 

  • Owens, P. N., Walling, D. E., & Leeks, G. J. L. (1999). Deposition and storage of fine grained sediments within the main channel system of the River Tweed, Scotland. Earth Surface Processes and Landforms, 24, 778–783. doi:10.1002/(SICI)1096-9837(199911)24:12<1061::AID-ESP35>3.0.CO;2-Y.

    Article  Google Scholar 

  • Rice, C. M., McCloyd, R. J., Boyce, A. J., & Marchev, P. (2007). Stable isotope study of the mineralization and alteration in the Madjarovo Pb–Zn district, south–east Bulgaria. Mineralium Deposita, 42, 691–713. doi:10.1007/s00126-007-0130-x.

    Article  CAS  Google Scholar 

  • Ricking, M., & Terytze, K. (1999). Trace metals and organic compounds in sediment samples from the River Danube in Russe and Lake Srebarna (Bulgaria). Environmental Geology, 37, 40–46. doi:10.1007/s002540050358.

    Article  CAS  Google Scholar 

  • Sakan, S., Grzetic, I., & Dordevic, D. (2007). Distribution and fractionation of heavy metals in the Tisa (Tisza) River sediments. Environmental Science and Pollution Research, 14, 229–236. doi:10.1065/espr2006.05.304.

    Article  CAS  Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.

    Article  CAS  Google Scholar 

  • Ščančar, J., Murko, S., Zuliani, T., Horvat, M., Kocman, D., Heath, E., et al. (2007). Report on the contamination of the Sava River sediments with metals and organic pollutants (p. 17). Ljunbljana: SARIB. Report on the contamination of the Sava River sediments with metals and organic pollutants.

    Google Scholar 

  • Skrbic, B., & Cupic, S. (2004). Trace metal distribution in surface soils of Novi Sad and bank sediment of the Danube River. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 1547–1558. doi:10.1081/ESE-120037853.

    Google Scholar 

  • Stoica, A., Capota, P., & Baiulescu, G. E. (2000). Determination of copper, cadmium, zinc and lead in Arges River in Romania during four seasons by inductively coupled plasma atomic emission spectrometry and anodic stripping voltammetry. Analytical Letters, 33, 3025–3035. doi:10.1080/00032710008543239.

    Article  CAS  Google Scholar 

  • Stos-Gale, Z. A., Gale, N. H., Annetts, N., Todorov, T., Lilov, P., Raduncheva, A., et al. (1998). Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 5, ores from Bulgaria. Archaeometry, 40, 217–226. doi:10.1111/j.1475-4754.1998.tb00834.x.

    Article  CAS  Google Scholar 

  • Strashimirov, S., Petrunov, R., & Kanazirski, M. (2002). Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Mineralium Deposita, 37, 587–598. doi:10.1007/s00126-002-0275-6.

    Article  CAS  Google Scholar 

  • US EPA (2002). A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems (pp. 232). US EPA-905-B02-001-C.

  • Vassileva, R. D., Bonev, I. K., Marchev, P., & Atanassova, R. (2005). Pb–Zn deposits in the Madan ore field, South Bulgaria. Ore Geology Reviews, 27, 90–91. doi:10.1016/j.oregeorev.2005.07.026.

    Article  Google Scholar 

  • Vesselinov, I., Kolarova, V., Hadjiev, A., Hrischeva, E., & Kerestedjian, T. (1996). Mineralogical and geochemical characteristics of two tailings ponds of the Martinovo and Chiprovtsi ore-dressing plants (in Bulgarian). Geochemistry, Mineralogy and Petrology, 31, 89–102.

    Google Scholar 

  • Villarroel, L. F., Miller, J. R., Lechler, P. J., & Germanoski, D. (2006). Lead, zinc and antimony contamination of the Rio Chilco–Rio Tupiza drainage system, Southern Bolivia. Environmental Geology, 51, 283–299. doi:10.1007/s00254-006-0326-x.

    Article  CAS  Google Scholar 

  • von Quadt, A., Moritz, R., Peytcheva, I., & Heinrich, C. A. (2005). Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geology Reviews, 27, 95–126. doi:10.1016/j.oregeorev.2005.07.024.

    Article  Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments in the River Danube. Chemosphere, 51, 633–642. doi:10.1016/S0045-6535(03)00217-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by a Royal Society Joint Project Grant. The authors would like to thank Mr. Ian Gulley of the Institute of Geography and Earth Sciences' Drawing Office for producing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Bird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, G., Brewer, P.A., Macklin, M.G. et al. Dispersal of Contaminant Metals in the Mining-Affected Danube and Maritsa Drainage Basins, Bulgaria, Eastern Europe. Water Air Soil Pollut 206, 105–127 (2010). https://doi.org/10.1007/s11270-009-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0090-0

Keywords

Navigation