Skip to main content
Log in

Heavy Metal–Mineral Associations in Coeur d’Alene River Sediments: A Synchrotron-Based Analysis

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Nearly a century of mining activities upstream have contaminated Lake Coeur d’Alene and its tributaries with Pb, Zn, and other heavy metals. Heavy metal concentrations in sediments of the Coeur d’Alene watershed have been shown to be inversely proportional to the sediment size fraction; thus, analysis on a very small scale is essential to determine the mobility and stability of heavy metals in this environment. Micron-scale synchrotron-based methods were used to determine the association of heavy metals with solid phases in sediments of the Coeur d’Alene River. Bulk X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy, and synchrotron-based microfocused XRD combined with microfocused X-ray fluorescence mapping indicate the presence of crystalline Pb- and Zn-bearing mineral phases of dundasite [Pb2Al4(CO3)4(OH)8·3H2O], coronadite [PbMn8O16], stolzite [PbWO4], mattheddleite [Pb10(SiO4)3.5(SO4)2Cl2], bindheimite [Pb2Sb2O7], and smithsonite [ZnCO3]. Likely phases for Zn and Pb adsorption were ferrihydrite, diaspore [AlO(OH)], manganite [Mn(III)O(OH)], muscovite [KAl2(Si3Al)O10(OH,F)2], biotite [K(Fe,Mg)3AlSi3O10(F,OH)2], and montmorillonite [Na0.3(Al,Mg)2Si4O10(OH)2·8H2O]. The large predominance of Fe and Mn (hydr)oxides over other sorbent minerals suggests that the metal sorption behavior is dominated by these (hydr)oxide phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (1990). Handbook of mineralogy. Mineral Data Publishing by permission of the Mineralogical Society of America, Tucson Arizona, USA.

  • Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437. doi:10.1016/j.chemosphere.2007.04.068.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., Box, S. E., & Tonkin, J. W. (2003). Modeling precipitation and sorption of elements during mixing of river water and pore water in the Coeur d’Alene River basin. Environmental Science & Technology, 37(20), 4694–4701. doi:10.1021/es0303283.

    Article  CAS  Google Scholar 

  • Bookstrom, A. A., Box, S. E., Campbell, J. K., Foster, K. I., & Jackson, B. L. (2001). Lead-rich sediments, Coeur d’Alene River Valley, Idaho: Area, volume, Tonnage, and lead content. US Geological Survey Open-File Report, 01-140.

  • Borch, T., & Fendorf, S. (2008). Phosphate interactions with iron (Hydr) oxides: mineralization pathways and phosphorus retention upon bioreduction. In M. O. Barnett, & D. B. Kent (Eds.), Developments in earth and environmental sciences (7), Adsorption of metals by geomedia II: Variables, mechanisms, and model application (pp. 321–348). Amsterdam: Elsevier.

    Google Scholar 

  • Borch, T., Masue, Y., Kukkadapu, R. K., & Fendorf, S. (2007). Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environmental Science & Technology, 41(1), 166–172. doi:10.1021/es060695p.

    Article  CAS  Google Scholar 

  • Borch, T., Camper, A. K., Biederman, J. A., Butterfield, P. W., Gerlach, R., & Amonette, J. E. (2008). Evaluation of characterization techniques for iron pipe corrosion products and iron oxide thin films. Journal of Environmental Engineering, 134(10), 835–844. doi:10.1061/(ASCE)0733-9372(2008)134:10(835).

    Article  CAS  Google Scholar 

  • Bostick, B. C., Hansel, C. M., La Force, M. J., & Fendorf, S. (2001). Seasonal fluctuations in zinc speciation within a contaminated wetland. Environmental Science & Technology, 35(19), 3823–3829. doi:10.1021/es010549d.

    Article  CAS  Google Scholar 

  • Box, S.E., Bookstrom, A.A., & Ikramuddin, M. (2005). Stream-Sediment Geochemistry in Mining-Impacted Streams: Sediment Mobilized by Floods in the Coeur d’Alene-Spokane River System, Idaho and Washington. In U.S.D.o.t. Interior and U.S.G. Survey (eds.), USGS.

  • Brim, H., Heuer, H., Krogerrecklenfort, E., Mergeay, M., & Smalla, K. (1999). Characterization of the bacterial community of a zinc-polluted soil. Canadian Journal of Microbiology, 45(4), 326–338. doi:10.1139/cjm-45-4-326.

    Article  CAS  Google Scholar 

  • Cocco, G., Fanfani, L., Nunzi, A., & Zanazzi, P. F. (1972). The crystal structure of dundasite. Mineralogical Magazine, 38(297), 564–569. doi:10.1180/minmag.1972.038.297.04.

    Article  CAS  Google Scholar 

  • Comin, F., Incoccia, L., & Mobilio, S. (1983). Glitches compensation in EXAFS data-collection. Journal of Physics. E, Scientific Instruments, 16(1), 83–86. doi:10.1088/0022-3735/16/1/016.

    Article  CAS  Google Scholar 

  • Cummings, D. E., March, A. W., Bostick, B., Spring, S., Caccavo, F., Fendorf, S., et al. (2000). Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Applied and Environmental Microbiology, 66(1), 154–162.

    Article  CAS  Google Scholar 

  • Downs, R. T. (2006). The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan.

  • Farag, A. M., Woodward, D. F., Goldstein, J. N., Brumbaugh, W., & Meyer, J. S. (1998). Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho. Archives of Environmental Contamination and Toxicology, 34(2), 119–127. doi:10.1007/s002449900295.

    Article  CAS  Google Scholar 

  • Farag, A. M., Suedkamp, M. J., Meyer, J. S., Barrows, R., & Woodward, D. F. (2000). Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, USA, and fed artificially contaminated Artemia. Journal of Fish Biology, 56(1), 173–190. doi:10.1111/j.1095-8649.2000.tb02093.x.

    Article  CAS  Google Scholar 

  • Farquhar, M. L., Vaughan, D. J., Hughes, C. R., Charnock, J. M., & England, K. E. R. (1997). Experimental studies of the interaction of aqueous metal cations with mineral substrates: lead, cadmium, and copper with perthitic feldspar, muscovite, and biotite. Geochimica et Cosmochimica Acta, 61(15), 3051–3064. doi:10.1016/S0016-7037(97)00117-8.

    Article  CAS  Google Scholar 

  • Farrand, W. H., & Harsanyi, J. C. (1997). Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sensing of Environment, 59(1), 64–76. doi:10.1016/S0034-4257(96)00080-6.

    Article  Google Scholar 

  • Fleck, R. J., Criss, R. E., Eaton, G. F., Cleland, R. W., Wavra, C. S., & Bond, W. D. (2002). Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 97(1), 23–42. doi:10.2113/97.1.23.

    CAS  Google Scholar 

  • Fredrickson, J. K., Zachara, J. M., Kukkadapu, R. K., Gorby, Y. A., Smith, S. C., & Brown, C. F. (2001). Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environmental Science & Technology, 35(4), 703–712. doi:10.1021/es001500v.

    Article  CAS  Google Scholar 

  • Friedrich, F., Gasharova, B., Mathis, Y. L., Nuesch, R., & Weidler, P. G. (2006). Far-infrared spectroscopy of interlayer vibrations of Cu(II), Mg(II), Zn(II), and Al(III) intercalated muscovite. Applied Spectroscopy, 60(7), 723–728. doi:10.1366/000370206777887053.

    Article  CAS  Google Scholar 

  • Geesey, G. G., Borch, T., & Reardon, C. L. (2008). Resolving biogeochemical phenomena at high spatial resolution through electron microscopy. Geobiology, 6(3), 263–269. doi:10.1111/j.1472-4669.2008.00160.x.

    Article  CAS  Google Scholar 

  • Ginder-Vogel, M., Borch, T., Mayes, M. A., Jardine, P. M., & Fendorf, S. (2005). Chromate reduction and retention processes within arid subsurface environments. Environmental Science & Technology, 39(20), 7833–7839. doi:10.1021/es050535y.

    Article  CAS  Google Scholar 

  • Greene, A. C., & Madgwick, J. C. (1991). Microbial formation of manganese oxides. Applied and Environmental Microbiology, 57(4), 1114–1120.

    CAS  Google Scholar 

  • Grieco, R.A. (1981). Petrology and geochemistry of carbonate veins in the Moe-Reindeer Queen mineral belt of the Coeur d'Alene mining district, Idaho-Montana. Masters Thesis, Washington State University, 1981.

  • Grosbois, C. A., Horowitz, A. J., Smith, J. J., & Elrick, K. A. (2001). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part III. Downstream effects: The Spokane River Basin. Hydrological Processes, 15(5), 855–875. doi:10.1002/hyp.192.

    Article  Google Scholar 

  • Hammersley, A.P. (1997). FIT2D: An introduction and overview. European Synchrotron Radiation Facility, Grenoble, France.

  • Hansel, C. M., Benner, S. G., Neiss, J., Dohnalkova, A., Kukkadapu, R. K., & Fendorf, S. (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16), 2977–2992. doi:10.1016/S0016-7037(03)00276-X.

    Article  CAS  Google Scholar 

  • Harrington, J. M., Fendorf, S. E., & Rosenzweig, R. F. (1998a). Biotic generation of arsenic(III) in metal(loid)-contaminated freshwater lake sediments. Environmental Science & Technology, 32(16), 2425–2430. doi:10.1021/es971129k.

    Article  CAS  Google Scholar 

  • Harrington, J. M., LaForce, M. J., Rember, W. C., Fendorf, S. E., & Rosenzweig, R. F. (1998b). Phase associations and mobilization of iron and trace elements in Coeur d'Alene Lake, Idaho. Environmental Science & Technology, 32(5), 650–656. doi:10.1021/es970492o.

    Article  CAS  Google Scholar 

  • Haus, K. L., Hooper, R. L., Strumness, L. A., & Mahoney, J. B. (2007). Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM. Applied Geochemistry, 23(4), 692–704. doi:10.1016/j.apgeochem.2007.11.005.

    Article  CAS  Google Scholar 

  • Horowitz, A.J. (1993). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho. Part II, Surface sediments. In G.S. (U.S.) (ed.), U.S. Dept. of the Interior, U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor], Atlanta, Ga. Denver, CO.

  • Horowitz, A.J., Elrick, K.A. & Cook, R.B. (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part 1, Surface sediments. In G.S. (U.S.) (ed.), U.S. Dept. of the Interior, U.S. Geological Survey; U.S. Geological Survey, Open-File Reports Section [distributor], Doraville, Ga. Denver, Colo.

  • Horowitz, A. J., Elrick, K. A., Robbins, J. A., & Cook, R. B. (1995a). A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Journal of Geochemical Exploration, 52(1-2), 135–144. doi:10.1016/0375-6742(94)00041-9.

    Article  CAS  Google Scholar 

  • Horowitz, A. J., Elrick, K. A., Robbins, J. A., & Cook, R. B. (1995b). Effect of mining and related activities on the sediment trace-element geochemistry of Lake Coeur-Dalene, Idaho, USA. 2. Subsurface sediments. Hydrological Processes, 9(1), 35–54. doi:10.1002/hyp.3360090105.

    Article  Google Scholar 

  • Horowitz, A. J., Elrick, K. A., & Cook, R. B. (1999). Comment on “Phase Associations and Mobilization of Iron and trace elements in Coeur d’Alene Lake, Idaho”. Environmental Science & Technology, 33, 201–202. doi:10.1021/es980498t.

    Article  CAS  Google Scholar 

  • Kalnejais, L. H., Martin, W. R., Signell, R. P., & Bothner, M. H. (2007). Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environmental Science & Technology, 41(7), 2282–2288. doi:10.1021/es061770z.

    Article  CAS  Google Scholar 

  • Konopka, A., Zakharova, T., Bischoff, M., Oliver, L., Nakatsu, C., & Turco, R. F. (1999). Microbial biomass and activity in lead-contaminated soil. Applied and Environmental Microbiology, 65(5), 2256–2259.

    CAS  Google Scholar 

  • Kurek, E., Kaczorowska, R., Nadulska, I., Ochal, M., Puacz, E., & Patkowska, E. (1996). Retention of Cd by soil constituents under different environmental conditions. Chemosphere, 33(2), 277–284. doi:10.1016/0045-6535(96)00170-1.

    Article  CAS  Google Scholar 

  • Kuwabara, J. S., Carter, J. L., Topping, B. R., Fend, S. V., Woods, P. F., Berelson, W. M., et al. (2003). Importance of sediment-water interactions in Coeur d'Alene Lake, Idaho, USA: Management implications. Environmental Management, 32(3), 348–359. doi:10.1007/s00267-003-0020-7.

    Article  Google Scholar 

  • La Force, M. J., Fendorf, S. E., Li, G. C., Schneider, G. M., & Rosenzweig, R. F. (1998). A laboratory evaluation of trace element mobility from flooding and nutrient loading of Coeur d'Alene River sediments. Journal of Environmental Quality, 27(2), 318–328.

    Google Scholar 

  • La Force, M. J., Fendorf, S., Li, G. C., & Rosenzweig, R. F. (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation. Journal of Environmental Quality, 28(4), 1195–1200.

    Google Scholar 

  • Lawson, F., & Meyer, H. C. (1964). Occurrence of bindheimite in North-West Queensland. Australian Journal of Earth Sciences, 11(1), 61–64. doi:10.1080/00167616408728559.

    Article  CAS  Google Scholar 

  • Leach, D. L., Landis, G. P., & Hofstra, A. H. (1985). Metamorphic origin of the Coeur d’Alene base- and precious-metal veins in the Belt basin, Idaho and Montana. Geology, 16(2), 122–125. doi:10.1130/0091-7613(1988)016<0122:MOOTCD>2.3.CO;2.

    Article  Google Scholar 

  • Lin, Y. M., Yang, X. F., & Liu, Y. (2003). Kinetic responses of activated sludge microorganisms to individual and joint copper and zinc. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 38(2), 353–360. doi:10.1081/ESE-120016899.

    CAS  Google Scholar 

  • Lloyd, J. R., & Lovley, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology, 12(3), 248–253. doi:10.1016/S0958-1669(00)00207-X.

    Article  CAS  Google Scholar 

  • Lothenbach, B., Furrer, G., & Schulin, R. (1997). Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environmental Science & Technology, 31(5), 1452–1462. doi:10.1021/es960697h.

    Article  CAS  Google Scholar 

  • Manceau, A., Marcus, M. A., Tamura, N., Proux, O., Geoffroy, N., & Lanson, B. (2004). Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochimica et Cosmochimica Acta, 68(11), 2467–2483. doi:10.1016/j.gca.2003.11.021.

    Article  CAS  Google Scholar 

  • Mauk, J. L., & White, B. G. (2004). Stratigraphy of the Proterozoic Revett Formation and its control on Ag–Pb–Zn vein mineralization in the Coeur d'Alene district, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 99(2), 295–312. doi:10.2113/99.2.295.

    CAS  Google Scholar 

  • Maxfield, D., Rodriguez, J. M., Buettner, M., Davis, J., Forbes, L., Kovacs, R., et al. (1974a). Heavy metal content in the sediments of the southern part of the Coeur d'Alene Lake. Environmental Pollution (1970), 6(4), 263–266.

    Article  CAS  Google Scholar 

  • Maxfield, D., Rodriguez, J. M., Buettner, M., Davis, J., Forbes, L., Kovacs, R., et al. (1974b). Heavy metal pollution in the sediments of the Coeur d'Alene river delta. Environmental Pollution (1970), 7(1), 1–6.

    Article  CAS  Google Scholar 

  • Melchiorre, E. B., Williams, P. A., & Bevins, R. E. (2001). A low temperature oxygen isotope thermometer for cerussite, with applications at Broken Hill, New South Wales, Australia. Geochimica et Cosmochimica Acta, 65(15), 2527–2533. doi:10.1016/S0016-7037(01)00604-4.

    Article  CAS  Google Scholar 

  • Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

    Article  CAS  Google Scholar 

  • Panneerselvam, K., Macfarlane, A. W., & Salters, V. J. M. (2006). Provenance of ore metals in base and precious metal deposits of Central Idaho as inferred from lead isotopes. Economic Geology and the Bulletin of the Society of Economic Geologists, 101(5), 1063–1077. doi:10.2113/gsecongeo.101.5.1063.

    CAS  Google Scholar 

  • Paulson, A. J. (1997). The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeur d'Alene Mining District, Idaho, U.S.A. Applied Geochemistry, 12(4), 447–464. doi:10.1016/S0883-2927(97)00013-9.

    Article  CAS  Google Scholar 

  • Paulson, A. J. (2001). Biogeochemical removal of Zn and Cd in the Coeur d'Alene River (Idaho, USA), downstream of a mining district. The Science of the Total Environment, 278(1-3), 31–44. doi:10.1016/S0048-9697(00)00886-X.

    Article  CAS  Google Scholar 

  • Paulson, A. J., & Balistrieri, L. (1999). Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters. Environmental Science & Technology, 33(21), 3850–3856. doi:10.1021/es9900454.

    Article  CAS  Google Scholar 

  • Post, J. E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3447. doi:10.1073/pnas.96.7.3447.

    Article  CAS  Google Scholar 

  • Post, J. E., & Bish, D. L. (1989). Rietveld refinement of the coronadite structure. The American Mineralogist, 74(7-8), 913–917.

    CAS  Google Scholar 

  • Reece, D. E., Felkey, J. R., & Wai, C. M. (1978). Heavy metal pollution in the sediments of the Coeur d'Alene River, Idaho. Environmental Geology, 2(5), 289–293. doi:10.1007/BF02430675.

    Article  CAS  Google Scholar 

  • Rosenberg, P. E., & Larson, P. B. (2000). Isotope geochemistry of ankerite-bearing veins associated with the Coeur d'Alene Mining District, Idaho. Economic Geology and the Bulletin of the Society of Economic Geologists, 95(8), 1689–1699. doi:10.2113/95.8.1689.

    CAS  Google Scholar 

  • Sani, R. K., Peyton, B. M., & Brown, L. T. (2001). Copper induced inhibition of growth of Desulfovibrio desulfuricans G20: Assessment of its toxicity and correlation with those of zinc and lead. Applied and Environmental Microbiology, 67, 4765–4772. doi:10.1128/AEM.67.10.4765-4772.2001.

    Article  CAS  Google Scholar 

  • Scheinost, A. C., Abend, S., Pandya, K. I., & Sparks, D. L. (2001). Kinetic controls on Cu and Pb sorption by ferrihydrite. Environmental Science & Technology, 35(6), 1090–1096. doi:10.1021/es000107m.

    Article  CAS  Google Scholar 

  • Schlegel, M. L., & Manceau, A. (2007). Zn incorporation in hydroxy-Al- and Keggin Al-13-intercalated montmorillonite: A powder and polarized EXAFS study. Environmental Science & Technology, 41(6), 1942–1948. doi:10.1021/es061958i.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Cornell, R.M. (2000). Iron oxides in the laboratory. Weinheim: Wiley-VCH.

  • Sengör, S., Spycher, N. F., Ginn, T. R., Sani, R. K., & Peyton, B. (2007). Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments. Applied Geochemistry, 22(12), 2569–2594. doi:10.1016/j.apgeochem.2007.06.011.

    Article  CAS  Google Scholar 

  • Spear, T. M., Svee, W., Vincent, J. H., & Stanisich, N. (1998). Chemical speciation of lead dust associated with primary lead smelting. Environmental Health Perspectives, 106(9), 565–571. doi:10.2307/3434231.

    Article  CAS  Google Scholar 

  • Sprenke, K. F., Rember, W. C., Bender, S. F., Hoffmann, M. L., Rabbi, F., & Chamberlain, V. E. (2000). Toxic metal contamination in the lateral lakes of the Coeur d'Alene River valley, Idaho. Environmental Geology, 39(6), 575–586. doi:10.1007/s002540050469.

    Article  CAS  Google Scholar 

  • Toevs, G. R., Morra, M. J., Polizzotto, M. L., Strawn, D. G., Bostick, B. C., & Fendorf, S. (2006). Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science & Technology, 40(8), 2537–2543. doi:10.1021/es051781c.

    Article  CAS  Google Scholar 

  • Tonkin, J., Balistrieri, L., & Murray, J. (2002). Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environmental Science & Technology, 36(3), 484–492. doi:10.1021/es0109085.

    Article  CAS  Google Scholar 

  • Webb, S. M. (2005). SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Physica Scripta, T115, 1011–1014. doi:10.1238/Physica.Topical.115a01011.

    Article  CAS  Google Scholar 

  • Winowiecki, L. (2002). Geochemical cycling of heavy metals in the sediment of Lake Coeur d'Alene, Idaho. Masters Thesis, University of Idaho, Moscow, Idaho 2002.

  • Woods, P. F., & Beckwith, M. A. (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey Water-Supply Paper, 2485, 1–93.

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 0628258. The support of the WSU Center for Multiphase Environmental Research and the WSU School of Chemical and Bioengineering also contributed significantly to this research. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors greatly appreciate the help of Charles Knaack, Diane Johnson Cornelius, and Rick Conrey at WSU Geo Analytical Laboratories for sample analysis and counsel. Additional thanks to Peg Dirckx, Brandy Stewart, Lisa Kirk, and two anonymous reviewers for greatly improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Sani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moberly, J.G., Borch, T., Sani, R.K. et al. Heavy Metal–Mineral Associations in Coeur d’Alene River Sediments: A Synchrotron-Based Analysis. Water Air Soil Pollut 201, 195–208 (2009). https://doi.org/10.1007/s11270-008-9937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9937-z

Keywords

Navigation