Skip to main content

Advertisement

Log in

Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This work describes recent research carried out in an extremely acidic (pH 0.61–0.82) and hypersaline (e.g., 134 g/L SO4 2-, 74 g/L Fe, 7.5 g/L Al, 3 g/L Mg, 2 g/L Cu, 1 g/L Zn) leachate which seeps from a pyrite pile in San Telmo mine (Huelva, SW Spain) and forms evaporative pools of ultra-concentrated water in which attractive crystals of Zn-rich melanterite (FeIISO4 7H2O) are formed. Geochemical modeling with the Pitzer method indicates that the acidic brine was near saturation with respect to melanterite (SIMel = 0 ± 0.2). The microbiological investigation has revealed a surprisingly high biomass (1.4 × 106 cells mL−1) and an exotic ecosystem composed of acidophilic, Fe-oxidizing archaea (mainly Ferroplasma spp., representing 52% of the microbial population), and minor numbers of acidophilic bacteria (including Leptospirillum spp. (3.2%), Acidithiobacillus spp. (1.6%), and Alphaproteobacteria (2.8%)). The microbial production of FeIII allows the oxidative dissolution of pyrite and other sulphides, which results in additional inputs of FeII, SO4 2- and acidity to the system. The surfaces of the pyrite crystals show a typical etch-pitted texture, as well as blobs of elemental sulphur, which are both compatible with this indirect, microbially mediated oxidation mechanism. The composition of the acidic leachate seems to result from the combination of several processes which include: (1) formation of melanterite within the pile during relatively dry seasons, (2) subsequent dissolution of melanterite during rainy episodes, (3) microbial oxidation of FeII, (4) sulphide oxidation mediated by FeIII, (5) dissolution of chlorite and other aluminosilicates present in the pile, and (6) cooling and/or evaporation of seepage from the pile and consequent melanterite precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera, A., Manrubia, S. C., Gómez, F., Rodríguez, N., & Amils, R. (2006). Eukaryotic community distribution and its relationship to water physicochemical parameters in an extremely acidic environment, Río Tinto (Southwestern Spain). Applied and Environmental Microbiology, 72(8), 5325–5330.

    Article  CAS  Google Scholar 

  • Alpers, C. N., & Nordstrom, D. K. (1991). Evolution of extremely acid mine waters at Iron mountain, California—are there any lower limits to pH? Paper presented at the 2nd International Conference on the abatement of acidic drainage, MEND (Mine Environment Neutral Drainage), Ottawa, Canada, 2, 321–342

  • Alpers, C. N., & Nordstrom, D. K. (1999). Geochemical modeling of water–rock interactions in mining environments. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 289–323

  • Alpers, C. N., Nordstrom, D. K., & Thompson, J. M. (1994). Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. In C. N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium series 550 (pp. 324–344). Washington, DC: American Chemical Society Symposium.

    Google Scholar 

  • Alpers, C. N., Nordstrom, D. K., & Spitzley, J. (2003). Extreme acid mine drainage from a pyritic massive sulphide deposit: The iron mountain end-member. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 407–430). Vancouver: Mineralogical Association of Canada.

    Google Scholar 

  • Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., & Allen, E. E. (2006). Lineages of acidophilic archaea revealed by community genomic analyses. Science, 314, 1933–1935.

    Article  CAS  Google Scholar 

  • Ball, J. W., & Nordstrom, D. K. (1991). User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open-File Report, 91-183 p. 189. Denver: USGS.

    Google Scholar 

  • Blowes, D. W., Reardon, E. J., Jambor, J. L., & Cherry, J. A. (1991). The formation and potential importance of cemented layers in inactive sulphide mine tailings. Geochimica et Cosmochimica Acta, 55, 965–978.

    Article  CAS  Google Scholar 

  • Bond, P. L., Druschel, G. K., & Banfield, J. F. (2000a). Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.

    Article  CAS  Google Scholar 

  • Bond, P. L., Smriga, S. P., & Banfield, J. F. (2000b). Phylogeny of microorganism populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 3842–3849.

    Article  CAS  Google Scholar 

  • Baumler, D. J., Jeong, K. C., Fox, B. G., Banfield, J. F., & Kaspar, C. W. (2005). Sulfate requirement for heterotrophic growth of “Ferroplasma acidarmanus” strain fer1. Research in Microbiology, 156, 492–498.

    Article  CAS  Google Scholar 

  • Druschel, G. K., Baker, B. J., Gihring, T. M., & Banfield, J. F. (2004). Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions, 5-2, 13–32.

    Article  Google Scholar 

  • Edwards, K. J., Schrenk, M. O., Hamers, R., & Banfield, J. F. (1998). Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. American Mineralogist, 83, 1444–1453.

    CAS  Google Scholar 

  • Edwards, K. J., Gihring, T. M., & Banfield, J. F. (1999). Seasonal variations in microbial populations and environmental conditions at an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65, 3627–3632.

    CAS  Google Scholar 

  • Edwards, K. J., Bond, P. L., Gihring, T. M., & Banfield, J. F. (2000). An archaeal Fe-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.

    Article  CAS  Google Scholar 

  • Frau, F. (2000). The formation-dissolution precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: Environmental implications. Mineralogical Magazine, 64, 995–1006.

    Article  CAS  Google Scholar 

  • González-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R., & Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Applied and Environmental Microbiology, 6, 4853–4865.

    Article  Google Scholar 

  • Johnson, D. B. (2006). Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy, 83, 153–166.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall, Inc.

    Google Scholar 

  • López-Archilla, A. I., & Amils, R. (1999). A comparative ecological study of two acidic rivers in southwestern Spain. Microbial Ecology, 38, 146–156.

    Article  Google Scholar 

  • López-Archilla, A. I., Marín, I., & Amils, R. (2001). Microbial community composition and ecology of an acidic aquatic environment: the Tinto river, Spain. Microbial Ecology, 41(1), 20–35.

    Google Scholar 

  • Nordstrom, D. K. (1999). Some fundamentals of aqueous geochemistry. In: G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues. Society of Economic Geologists. Reviews in Economic Geology, 6A, 117–123.

  • Nordstrom, D. K. (2004). Modeling low-temperature geochemical processes: Treatise on geochemistry. In H. D. Holland, K. K. Turekian, & J. I. Drever (Eds.), Surface and ground water, weathering, and soils, vol. 5 (pp. 37–72). Amsterdam: Elsevier Pergamon.

    Google Scholar 

  • Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits, part a. processes, techniques, and health issues: Society of economic geologists. Reviews in Economic Geology, 6A, 133–156.

  • Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology, 34, 254–258.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigation Report 99-4259 p. 312. Denver: USGS.

    Google Scholar 

  • Pernthaler, A., Pernthaler, J., & Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition (CARD) for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.

    Article  CAS  Google Scholar 

  • Pitzer, K. S. (1986). Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure and Applied Chemistry, 58(12), 1599–1610.

    Article  CAS  Google Scholar 

  • Ptacek, C. J., & Blowes, D. W. (1994). Influence of siderite on the pore-water chemistry of inactive mine-tailings impoundments. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 172–189). Washington, DC: American Chemical Society Symposium.

    Google Scholar 

  • Ptacek, C. J., & Blowes, D. W. (2000). Prediction of sulphate mineral solubility in concentrated waters. In C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Sulphate minerals: Crystallography, geochemistry, and environmental significance. Reviews in Mineralogy and Geochemistry, 40, 513–540.

  • Ptacek, C. J., & Blowes, D. W. (2003). Geochemistry of concentrated waters at mine-waste sites. In J. L. Jambor, D. W. Blowes, & A. I. M. Ritchie (Eds.), Environmental aspects of mine wastes, mineralogical association of Canada, short course series, vol. 31 (pp. 239–252). Vancouver: Mineralogical Association of Canada.

    Google Scholar 

  • Rimstidt, J. D., Chermak, J. A., & Gagen, P. M. (1994). Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In C.N. Alpers, & D. W. Blowes (Eds.), Environmental geochemistry of sulphide oxidation. American Chemical Society Symposium Series 550 (pp. 2–13). Washington, DC: American Chemical Society Symposium.

    Google Scholar 

  • Rowe, O. F., Sánchez-España, J., Hallberg, K. B., & Johnson, D. B. (2007). Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environmental Microbiology, 9(7), 1761–1771.

    Article  CAS  Google Scholar 

  • Sánchez-España, F. J. (2000) Mineralogy and geochemistry of the massive sulphide deposits of the Northern area of the Iberian Pyrite Belt (San Telmo-San Miguel-Peña del Hierro), Huelva, Spain. Dissertation, University of the Basque Country

  • Sánchez-España, F. J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20(7), 1320–1356.

    Article  Google Scholar 

  • Sánchez-España, F. J., López-Pamo, E., & Santofimia, E. (2007a). The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel river watershed, Huelva): Field and laboratory rates. Journal of Geochemical Exploration, 92, 120–132.

    Article  Google Scholar 

  • Sánchez-España, F. J., Santofimia, E., González-Toril, E., San Martín-Úriz, P., López Pamo, E., & Amils, R. (2007b). Physicochemical and microbiological stratification of a meromictic, acidic mine pit lake (San Telmo, Iberian Pyrite Belt). In Rosa. Cidu, & Franco Frau (Eds.), Paper presented at the Symposium of the International Mine Water Association IMWA 2007: Water in Mining Environments (pp. 447–451), Cagliari, Italy.

  • Sánchez-España, F. J., López-Pamo, E., Santofimia, E., & Diez-Ercilla, M. (2008). The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Applied Geochemistry, 23, 1260–1287.

    Google Scholar 

  • Sand, W., Gehrke, T., Jozsa, P. G., & Schippers, A. (2001). (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy, 59, 159–175.

    Article  CAS  Google Scholar 

  • Schippers, A., Jozsa, P.-G., & Sand, W. (1996). Sulfur chemistry in bacterial leaching of pyrite. Applied and Environmental Microbiology, 62-9, 3424–3431.

    Google Scholar 

  • Schippers, A., & Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1), 319–321.

    CAS  Google Scholar 

  • Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: The rate-determining step. Science, 167, 1121–1123.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Dr. Francisco Velasco (Basque Country University, UPV-EHU) is acknowledged for his kind permission to include some pictures in this work, and also for stimulating discussions about melanterite solubility. We sincerely thank the criticism and comments made by two anonymous reviewers, which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez España.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez España, J., González Toril, E., López Pamo, E. et al. Biogeochemistry of a Hyperacidic and Ultraconcentrated Pyrite Leachate in San Telmo mine (Iberian Pyrite Belt, Spain). Water Air Soil Pollut 194, 243–257 (2008). https://doi.org/10.1007/s11270-008-9713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9713-0

Keywords

Navigation