Skip to main content

Advertisement

Log in

Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Identifying areas with high groundwater potential is important for groundwater resources management. The main objective of this study is to propose a novel classifier ensemble method, namely Random Forest Classifier based on Random Subspace Ensemble (RS-RF), for groundwater potential mapping (GWPM) in Qorveh-Dehgolan plain, Kurdistan province, Iran. A total of 12 conditioning factors (slope, aspect, elevation, curvature, stream power index (SPI), topographic wetness index (TWI), rainfall, lithology, land use, normalized difference vegetation index (NDVI), fault density, and river density) were selected for groundwater modeling. The least square support vector machine (LSSVM) feature selection method with a 10-fold cross-validation technique was used to validate the predictive capability of these conditioning factors for training the models. The performance of the RS-RF model was validated using the area under receiver operating characteristic curve (AUROC), success and prediction rate curves, kappa index, and several statistical index-based measures. In addition, Friedman and Wilcoxon signed-rank tests were used to assess statistically significant level among the new model with the state-of-the-art soft computing benchmark models, such as random forest (RF), logistic regression (LR) and naïve Bayes (NB). Results showed that the new hybrid model of RS-RF had a very high predictive capability for groundwater potential mapping and exhibited the best performance among other benchmark models (LR, RF, and NB). Results of the present study might be useful to water managers to make proper decisions on the optimal use of groundwater resources for future planning in the critical study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar C, Zinnert JC, Polo MJ, Young DR (2012) NDVI as an indicator for changes in water availability to woody vegetation. Ecol Indic 23:290–300

    Article  Google Scholar 

  • Al Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18:1481–1495

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble decision tree-based CHi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11:1063–1078

    Article  Google Scholar 

  • Beasley TM, Zumbo BD (2003) Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs. Comput Stat Data Anal 42:569–593

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40

    Article  Google Scholar 

  • Bui DT, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN (2015) A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomat Nat Haz Risk 6:243–271

    Article  Google Scholar 

  • Centor R, Keightley G (1989) Receiver Operating Characteristics (ROC) curve area analysis using the ROC ANALYZER. In: Proceedings/the... Annual Symposium on Computer Application [sic] in Medical Care. Symposium on Computer Applications in Medical Care. American Medical Informatics Association, p 222-226

  • Chapi K, Rudra RP, Ahmed SI, Khan AA, Gharabaghi B, Dickinson WT, Goel PK (2015) Spatial-temporal dynamics of runoff generation areas in a small agricultural watershed in southern Ontario. J Water Resour Protect 7:14–40

    Article  Google Scholar 

  • Chenini I, Mammou AB, El May M (2010) Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resour Manag 24:921–939

    Article  Google Scholar 

  • Chowdhury A, Jha MK, Chowdary V (2010) Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ Earth Sci 59:1209–1222

    Article  Google Scholar 

  • Chung C-JF, Fabbri AG (1993) The representation of geoscience information for data integration. Nonrenewable Resources 2:122–139

    Article  Google Scholar 

  • Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. J Hydrol 394:285–295

    Article  Google Scholar 

  • Devi PS, Srinivasulu S, Raju KK (2001) Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environ Geol 40:1088–1094

    Article  Google Scholar 

  • Dinesh Kumar P, Gopinath G, Seralathan P (2007) Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. Int J Remote Sens 28:5583–5601

    Article  Google Scholar 

  • Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  Google Scholar 

  • Falah F, Ghorbani Nejad S, Rahmati O, Daneshfar M, Zeinivand H (2017) Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto Int 32:1069–1089

    Google Scholar 

  • Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41:1937–1946

    Article  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  • Fu B, Burgher I (2015) Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J Arid Environ 113:59–68

    Article  Google Scholar 

  • Golkarian A, Naghibi SA, Kalantar B, Pradhan B (2018) Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess 190:149

    Article  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844

    Article  Google Scholar 

  • Jha MK, Chowdhury A, Chowdary V, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21:427–467

    Article  Google Scholar 

  • Kononenko I (1994) Estimating attributes: analysis and extensions of RELIEF. In: European conference on machine learning. Springer, p 171-182

  • Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol Lett 13:900–914

    Article  Google Scholar 

  • Lian C, Zeng Z, Yao W, Tang H (2014) Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis. Neural Comput & Applic 24:99–107

    Article  Google Scholar 

  • Mair A, El-Kadi AI (2013) Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. J Contam Hydrol 153:1–23

    Article  Google Scholar 

  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2013) A knowledge-driven GIS modeling technique for groundwater potential mapping at the upper Langat Basin, Malaysia. Arab J Geosci 6:1621–1637

    Article  Google Scholar 

  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7:711–724

    Article  Google Scholar 

  • Miao T, Wang M (2015) Susceptibility analysis of earthquake-induced landslide using random forest method

  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M (2014) Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci 46:33–57

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47:423–428

    Google Scholar 

  • Moore ID, Grayson R, Ladson A (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci Inf 8:171–186

    Article  Google Scholar 

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Article  Google Scholar 

  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2014) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131

    Article  Google Scholar 

  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J Hydrol 525:197–208

    Article  Google Scholar 

  • Osati K, Koeniger P, Salajegheh A, Mahdavi M, Chapi K, Malekian A (2014) Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River basin, Iran. Isot Environ Health Stud 50:169–183

    Article  Google Scholar 

  • Petus C, Lewis M, White D (2012) Using MODIS Normalized Difference Vegetation Index to monitor seasonal and inter-annual dynamics of wetland vegetation in the Great Artesian Basin: a baseline for assessment of future changes in a unique ecosystem. In: International Society for Photogrammetry and Remote Sensing

  • Pham BT, Tien Bui D, Indra P, Dholakia M (2015) A comparison study of predictive ability of support vector machines and naive bayes tree methods in landslide susceptibility assessment at an area between Tehri Garhwal and Pauri Garhwal, Uttarakhand state (India) using GIS. In: national symposium on geomatics for digital India and annual conventions of ISG & ISRS, Jaipur (India)

  • Pham BT, Bui DT, Prakash I, Dholakia M (2017) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 149:52–63

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Quinlan JR (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4:77–90

    Article  Google Scholar 

  • Rahmati O (2013) An investigation of quantitative zonation and groundwater potential (case study: Ghorveh-Dehgolan plain). M. Sc. thesis, Tehran University

  • Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8:7059–7071

    Article  Google Scholar 

  • Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran region, Iran. Catena 137:360–372

    Article  Google Scholar 

  • Rahmati O, Naghibi SA, Shahabi H, Bui DT, Pradhan B, Azareh A, Rafiei-Sardooi E, Samani AN, Melesse AM (2018) Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. J Hydrol 565:248–261

    Article  Google Scholar 

  • Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M (2015) Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71:804–818

    Article  Google Scholar 

  • Rokach L (2005) Ensemble methods for classifiers. In: Data mining and knowledge discovery handbook. Springer, p 957-980

  • Shahabi H, Hashim M, Ahmad BB (2015) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ Earth Sci 73:8647–8668

    Article  Google Scholar 

  • Shekhar S, Pandey AC (2015) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int 30:402–421

    Article  Google Scholar 

  • Shirzadi A, Chapi K, Shahabi H, Solaimani K, Kavian A, Ahmad BB (2017a) Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environ Earth Sci 76:152

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017b) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76:60

    Article  Google Scholar 

  • Simpson AJ, Fitter MJ (1973) What is the best index of detectability? Psychol Bull 80:481–488

    Article  Google Scholar 

  • Skurichina M, Duin RP (2002) Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Appl 5:121–135

    Article  Google Scholar 

  • Suykens JA, Van Gestel T, De Brabanter J (2002) Least squares support vector machines. World Scientific

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2016) Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci 9:79

    Article  Google Scholar 

  • Tang X, Ou Z, Su T, Sun H, Zhao P (2005) Robust precise eye location by adaboost and svm techniques. In: International Symposium on Neural Networks. Springer, p 93–98

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Walter S (2002) Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med 21:1237–1256

    Article  Google Scholar 

  • Wang L-M, Li X-L, Cao C-H, Yuan S-M (2006) Combining decision tree and naive Bayes for classification. Knowl-Based Syst 19:511–515

    Article  Google Scholar 

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey. University of Melbourne, Department, 200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Chapi.

Ethics declarations

Conflict of Interest

None.

Additional information

Highlights

• A new hybrid machine learning model named RS-RF was introduced for mapping groundwater potential.

• The new model was successfully evaluated and validated compared to the RF, LR, and NB models.

• The new model can be used as a tool for groundwater resources management in semi-arid areas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraki, S., Zanganeh, S.H., Chapi, K. et al. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resour Manage 33, 281–302 (2019). https://doi.org/10.1007/s11269-018-2102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-018-2102-6

Keywords

Navigation