Skip to main content

Advertisement

Log in

Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm

Water Resources Management Aims and scope Submit manuscript

Abstract

Nonlinear Muskingum model is a popular approach widely used for flood routing in hydraulic engineering. An improved backtracking search algorithm (BSA) is proposed to estimate the parameters of nonlinear Muskingum model. The orthogonal designed initialization population strategy and chaotic sequences are introduced to improve the exploration and exploitation ability of BSA. At the same time, a selection strategy based individual feasibility violation is developed to ensure that the computed outflows are non-negative in the evolutionary process. Finally, three examples are employed to demonstrate the performance of the improved BSA. The comparison between the results of routing outflows and those of Wilcoxon signed ranks test shows that the improved BSA outperforms particle swarm optimization, genetic algorithm, differential evolution and other algorithms reported in the literature in terms of solution quality. Therefore, it is reasonable to draw the conclusion that the proposed BSA is a satisfactory and efficient choice for parameter estimation of nonlinear Muskingum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Askarzadeh A, Coelho L (2014) A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int J Hydrog Energy 39(21):11165–11174

    Article  Google Scholar 

  • Barati R (2011) Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J Hydrol Eng 16(11):946–954

    Article  Google Scholar 

  • Barati R (2013) Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148

    Article  Google Scholar 

  • Bhattacharjee K, Bhattacharya A, Halder nee Dey S (2015) Backtracking search optimization based economic environmental power dispatch problems. Int J Electr Power Energy Syst 73:830–842

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, New York

    Book  Google Scholar 

  • Chen J, Yang X (2007) Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm. Commun Nonlinear Sci Numer Simul 12(5):849–858

    Article  Google Scholar 

  • Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404

    Article  Google Scholar 

  • Choudhury P (2007) Multiple inflows Muskingum routing model. J Hydrol Eng 12(5):473–481

    Article  Google Scholar 

  • Chu HJ, Chang LC (2009) Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027

    Article  Google Scholar 

  • Chung W, Kang YL (2006) Flood routing in long channels: alleviation of inconsistency and discharge dip in Muskingum - based models. J Chin Inst Eng 29(1):23–35

    Article  Google Scholar 

  • Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    Article  Google Scholar 

  • Costabile P, Costanzo C, Macchione F et al (2012) Two-dimensional model for overland flow simulations: a case study. Eur Water 38:13–23

    Google Scholar 

  • Das A (2004) Parameter estimation for Muskingum models. J Irrig Drain Eng 130(2):140–147

    Article  Google Scholar 

  • Das A (2007) Chance-constrained optimization-based parameter estimation for Muskingum models. J Irrig Drain Eng 133(5):487–494

    Article  Google Scholar 

  • Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Easa SM (2013) New and improved four-parameter non-linear Muskingum model. Proc ICE Water Manag 167(5):288–298

    Article  Google Scholar 

  • Easa SM (2014) Versatile Muskingum flood model with four variable parameters. Proc ICE Water Manag 168(3):139–148

    Article  Google Scholar 

  • Easa SM (2015) Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters. KSCE J Civ Eng 19(7):2281–2290

    Article  Google Scholar 

  • Gill MA (1978) Flood routing by the Muskingum method. J Hydrol 36:353–363

  • Gong W, Cai Z (2009) An improved multiobjective differential evolution based on Pareto-adaptive ϵ-dominance and orthogonal design. Eur J Oper Res 198(2):576–601

    Article  Google Scholar 

  • Geem ZW (2006) Parameter estimation for the nonlinear Muskingum model using the BFGS technique. J Irrig Drain Eng 132(5):474–478

    Article  Google Scholar 

  • Geem ZW (2011) Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search. J Hydrol Eng 16(8):684–688

    Article  Google Scholar 

  • Geem ZW (2014) Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model. Eng Optim 46(3):328–339

    Article  Google Scholar 

  • Haddad OB, Hamedi F, Orouji H et al (2015) A re-parameterized and improved nonlinear Muskingum model for flood routing. Water Resour Manag 29(9):3419–3440

    Article  Google Scholar 

  • Ji B, Yuan X, Chen Z, Tian H (2014) Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67:52–62

    Article  Google Scholar 

  • Kaffas K, Hrissanthou V (2015) Estimate of continuous sediment graphs in a basin, using a composite mathematical model. Environ Prog 2(2):361–378

    Article  Google Scholar 

  • Kanakoudis V, Tsitsifli S, Samaras P et al (2011) Developing appropriate performance indicators for urban water distribution systems evaluation at Mediterranean countries. Water Util J 1:31–40

    Google Scholar 

  • Karahan H, Gurarslan G, Geem ZW (2013) Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J Hydrol Eng 18(3):352–360

    Article  Google Scholar 

  • Karahan H, Gurarslan G, Geem ZW (2015) A new nonlinear Muskingum flood routing model incorporating lateral flow. Eng Optim 47(6):737–749

    Article  Google Scholar 

  • Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear Muskingum model using harmony search. J Am Water Resour Assoc 37(5):1131–1138

    Article  Google Scholar 

  • Latt ZZ (2015) Application of feedforward artificial neural network in Muskingum flood routing: a black-box forecasting approach for a natural river system. Water Resour Manag 29(14):4995–5014

    Article  Google Scholar 

  • Lin J (2015) Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn 80(1–2):209–219

    Article  Google Scholar 

  • Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J Hydrol Eng 15(10):844–851

    Article  Google Scholar 

  • Mohan S (1997) Parameter estimation of nonlinear Muskingum models using genetic algorithm. J Hydraul Eng 123(2):137–142

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2015) Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng 20(4). doi:10.1061/(ASCE)HE.1943-5584.0001028

  • Ouyang A, Li K, Truong TK, Sallam A, Sha EHM (2014) Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Comput & Applic 25(7–8):1785–1799

    Article  Google Scholar 

  • Rezaee Jordehi A (2015) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  • Sheng Z, Ouyang A, Liu LB, Yuan G (2014) A novel parameter estimation method for Muskingum model using new Newton-type trust region algorithm. Math Probl Eng. doi:10.1155/2014/634852

    Google Scholar 

  • Talatahari S, Sheikholeslami R, Azar BF, Daneshpajouh H (2013) Optimal parameter estimation for Muskingum model using a CSS-PSO method. Adv Mech Eng. doi:10.1155/2013/480954

    Google Scholar 

  • Tian H, Yuan X, Ji B, Chen Z (2014) Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Convers Manag 81:504–519

    Article  Google Scholar 

  • Vatankhah AR (2014) Evaluation of explicit numerical solution methods of the Muskingum model. J Hydrol Eng 19(8). doi:10.1061/(ASCE)HE.1943-5584.0000978

  • Wilson EM (1974) Engineering Hydrology. MacMillan Press, London

  • Xu DM, Qiu L, Chen SY (2012) Estimation of nonlinear Muskingum model parameter using differential evolution. J Hydrol Eng 17(2):348–353

    Article  Google Scholar 

  • Yuan X, Ji B, Yuan Y, Ikram R, Zhang X, Huang Y (2015) An efficient chaos embedded hybrid approach for hydro-thermal unit commitment problem. Energy Convers Manag 91:225–237

    Article  Google Scholar 

  • Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 119(5):600–610

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51379080, No. 41571514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Wu, X., Tian, H. et al. Parameter Identification of Nonlinear Muskingum Model with Backtracking Search Algorithm. Water Resour Manage 30, 2767–2783 (2016). https://doi.org/10.1007/s11269-016-1321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1321-y

Keywords

Navigation