Skip to main content
Log in

A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This paper presents a new efficient and robust hydrodynamic model for simulation of unsteady shallow water flow. The governing equations of shallow water flows in two dimensional forms are solved using a new total variation diminishing (TVD) MacCormack predictor corrector scheme. In this numerical technique an additional TVD term is added after the traditional predictor corrector steps. The advantage of the present TVD term is that it is very simple and gives accurate results at the same time removing the numerical oscillations. Further, application of semi implicit treatment of the friction slope term helps in flow simulation even with very low water depth. Finally the model is used to analyze a wide variety of hydraulic problems including quiescent water above irregular bed, steady flow over irregular bed, steady flow over irregular bed with a shock, dam break flow over dry bed and dam break flow over wet bed. For each of the cases numerical results are compared with available analytical solution and known experimental data. The agreements between the results are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson DA, Tannehill JD, Pletcher RH (1984) Computational fluid mechanics and heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Bellos V, Tsakiris G (2015) Comparing various methods of building representation for 2D flood modelling in built-up areas. Water Resour Manag 29(2):379–397

    Article  Google Scholar 

  • Bhallamudi SM, Chaudhry MH (1992) Computation of flows in open-channel transitions. J Hydraul Res 30(1):77–93

    Article  Google Scholar 

  • Brufau P, Vazquez-Cendon ME, Garcia-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. Int J Numer Methods Fluids 39(3):247–275

    Article  Google Scholar 

  • Campisano A, Cutore P, Modica C (2014) Improving the evaluation of slit-check dam trapping efficiency by using a 1D unsteady flow numerical model. J Hydraul Eng 140(7):04014024

    Article  Google Scholar 

  • Chaudhry MH (2008) Open channel flow (2nd ed), Springer

  • Costabile P, Macchione F (2012) Analysis of one-dimensional modelling for flood routing in compound channels. Water Resour Manag 26(5):1065–1087

    Article  Google Scholar 

  • Creaco E, Bertrand-Krajewski JL (2009) Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas. J Hydraul Res 47(2):195–202

    Article  Google Scholar 

  • Davis SF (1984) TVD finite difference schemes and artificial viscosity. ICASE Report No. 84-20

  • Delis AI, Skeels CP (1998) TVD schemes for open channel flow. Int J Numer Methods Fluids 26(7):791–809

    Article  Google Scholar 

  • Fennema RJ, Chaudhry MH (1986) Second-order numerical schemes for unsteady free-surface flows with shocks. Water Resour Res 22(13):1923–1930

    Article  Google Scholar 

  • Fennema RJ, Chaudhry MH (1990) Explicit methods for 2-D transient free-surface flows. J Hydraul Eng 116(8):1013–1034

    Article  Google Scholar 

  • Fiedler FR, Ramirez JA (2000) A numerical method for simulating discontinuous shallow flow over an infiltrating surface. Int J Numer Methods Fluids 32(2):219–239

    Article  Google Scholar 

  • Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–63

    Article  Google Scholar 

  • Garcia R, Kahawita RA (1986) Numerical solution of the St. Venant equations with the MacCormack finite difference scheme. Int J Numer Methods Fluids 6(5):259–274

    Article  Google Scholar 

  • Garcia-Navarro P, Alcrudo F, Saviron JM (1992) 1-D open channel flow simulation using TVD-MacCormack scheme. J Hydraul Eng 118(10):1359–1372

    Article  Google Scholar 

  • Gharangik A, Chaudhry MH (1991) Numerical simulation of hydraulic jump. J Hydraul Eng 117(9):1195–1211

    Article  Google Scholar 

  • Gottardi G, Venutelli M (2004) Central scheme for two-dimensional dam-break flow simulation. Adv Water Resour 27(3):259–268

    Article  Google Scholar 

  • Goutal N, Maurel F (1997) Proceedings of the 2nd workshop on dam break wave simulation. Technical report IIE-13/97/016A. Department of National Hydraulics Laboratory, France

  • Harten (1984) On a class of high-resolution total-variation-stable finite difference schemes. SIAM J Numer Anal 21(1):1–23

    Article  Google Scholar 

  • Jameson A, Schmidt W, Turkel E (1981) Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. Proceedings of AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto

  • Kesserwani G, Liang Q (2010) A discontinuous galerkin algorithm for the two-dimensional shallow water equations. Comput Methods Appl Mech Eng 199(49–52):3356–3368. doi:10.1016/j.cma.2010.07.007#_top

    Article  Google Scholar 

  • Kesserwani G, Liang Q, Vazquez J, Mose R (2010) Well-balancing issues related to the RKDG2 scheme for the shallow water equations. Int J Numer Methods Fluids 62(4):428–448

    Google Scholar 

  • Klonidis AJ, Soulis JV (2001) An implicit scheme for steady two-dimensional free-surface flow calculation. J Hydraul Res 39(3):1–10

    Google Scholar 

  • Kouassi KL, Kouame KI, Konan KS, Sanchez Angulo M, Deme M, Meledje NHE (2013) Two-dimensional numerical simulation of the hydro-sedimentary phenomena in Lake Taabo, Cote divoire. Water Resour Manag 27:4379–4394

    Article  Google Scholar 

  • Liang D, Falconer RA, Lin B (2006) Comparison between TVD–MacCormack and ADI type solvers of the shallow water equations. Adv Water Resour 29(12):1833–1845

    Article  Google Scholar 

  • Liang D, Lin B, Falconer RA (2007) A boundary-fitted numerical model for flood routing with shock-capturing capability. J Hydrol 332:477–486

    Article  Google Scholar 

  • Liang Q, Borthwick AGL (2009) Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput Fluids 38(2):221–234

    Article  Google Scholar 

  • Louaked M, Hanich L (1998) TVD scheme for the shallow water equations. J Hydraul Res 36(3):363–78

    Article  Google Scholar 

  • MacCormack RW (1969) The effect of viscosity in hypervelocity impact cratering. AIAA Hypervelocity Impact Conference, Cincinnati, pp 69–354

    Google Scholar 

  • Mohapatra PK, Bhallamudi SM (1994) Bed level variation in channel expansions with movable beds. J Irrig Drain Eng 120(6):1114–1121

    Article  Google Scholar 

  • Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computer Geosci 52 doi:10.1016/j.cageo.2012.08.024:1-10

  • Ouyang C, He S, Xu Q (2015) MacCormack-TVD finite difference solution for dam break hydraulics over erodible sediment beds. J Hydraul Eng 141(5):06014026

    Article  Google Scholar 

  • Rogers BD, Borthwick AGL, Taylor PH (2003) Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J Comput Phys 192(2):422–451

    Article  Google Scholar 

  • Sanyal J, Densmore AL, Carbonneau P (2014) 2D Finite element inundation modelling in anabranching channels with sparse data: examination of uncertainties. Water Resour Manag 28:2351–2366

    Article  Google Scholar 

  • Soares Frazao S, Zech Y (2002) Dam break in channels with 90° bend. J Hydraul Eng 128(11):956–968

    Article  Google Scholar 

  • Sreeja P, Gupta K (2007) An alternate approach for transient flow modeling in urban drainage systems. Water Resour Manag 21:1225–1244

    Article  Google Scholar 

  • Stoker JJ (1958) Water waves: mathematical theory with applications. Wiley-Interscience, Singapore

    Google Scholar 

  • Strang G (1968) On the construction and comparison of difference scheme. SIAM J Numer Anal 5:506–517

    Article  Google Scholar 

  • Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley

  • Tsakiris G, Bellos V (2014) A numerical model for two-dimensional flood routing in complex terrains. Water Resour Manag 28(5):1277–1291

    Article  Google Scholar 

  • Tseng MH, Chu CR (2000) Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. J Hydraul Res 38:123–131

    Article  Google Scholar 

  • Tseng MH (2003) The improved surface gradient method for flows simulation in variable bed topography channel using TVD-MacCormack scheme. Int J Numer Methods Fluids 43:71–91

    Article  Google Scholar 

  • Valiani A, Begnudelli L (2006) Divergence form for bed slope source term in shallow water equations. J Hydraul Eng 132(7):652–665

    Article  Google Scholar 

  • Vincent S, Caltagirone JP, Bonneton P (2001) Numerical modelling of bore propagation and run-up on sloping beaches using a MacCormack TVD scheme. J Hydraul Res 39(1):41–49

    Article  Google Scholar 

  • Wang J, Ni H, He Y (2000) Finite-difference TVD scheme for computation of dam-break problems. J Hydraul Eng 126(4):253–262

    Article  Google Scholar 

  • Xia J, Falconer RA, Lin B, Tan G (2010) Modelling flood routing on initially dry beds with refined treatment of wetting and drying. Int J River Basin Manag 8(3–4):225–243

    Article  Google Scholar 

  • Zhou JG, Causon DM, Ingram DM, Mingham CG (2001) The surface gradient method for the treatment of source terms in the shallow-water equations. J Comput Phys 168(1):1–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hriday Mani Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, H.M. A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow. Water Resour Manage 30, 1481–1497 (2016). https://doi.org/10.1007/s11269-016-1234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1234-9

Keywords

Navigation