Skip to main content
Log in

Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Monitoring the temporal variations of reference evapotranspiration (ETo) and quantifying any trends offer valuable information for regional hydrology, agricultural water requirements and water resources management. This study aimed to examine the temporal trends in the Penman–Monteith ETo in the west and southwest of Iran by using the Kendall and Spearman tests after eliminating the influence of significant lag-1 serial correlation from the ETo time series. The magnitudes and starting years of significant ETo trends were determined by the Mann-Kendall rank statistic and the Theil–Sen’s estimator, respectively. For the study period of 1966–2005, a significant positive lag-1 serial correlation coefficient was observed at almost all the stations. The existence of the positive serial correlation in the ETo series increased the possibility of the Kendall and Spearman tests to reject the null hypothesis of no trend while it is true. It was found that the Kendall test was more sensitive than the Spearman test to the existence of the positive serial correlation in the ETo series. After removing the serial correlation effect with pre-whitening method, only three significant increasing ETo trends were obtained at Khorram-Abad, Shahrekord and Zanjan stations at the rates of 0.16, 0.06 and 0.06 mm/day per decade, respectively. The significant increasing ETo trends of Khorram-Abad, Zanjan and Shahrekord stations started in 1997, 1994 and 1998, respectively. The stepwise regression method showed that wind speed was the most dominating variable affecting on the significant changes of ETo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abtew W, Obeysekera J, Iricanin N (2011) Pan evaporation and potential evapotranspiration trends in South Florida. Hydrol Process 25:958–969

    Article  Google Scholar 

  • Allen RG, Smith M, Perrier A, Pereira LS (1994a) An update for the calculation of reference evapotranspiration. ICID Bull 43(2):35–92

    Google Scholar 

  • Allen RG, Smith M, Perrier A, Pereira LS (1994b) An update for the definition of reference evapotranspiration. ICID Bull 43(2):1–34

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. guidelines for computing crop water requirements. FAO Irrig. Drain. Paper 56, Roma, Italy

  • Bormann B (2010) Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Clim Change. doi:10.1007/s10584-010-9869-7

  • Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climatic change. Agric For Meteorol 87(1):55–74

    Article  Google Scholar 

  • Chen SB, Liu YF, Thomas A (2006) Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961–2000. Climat Change 76:291–319

    Article  Google Scholar 

  • Croitoru AE, Holobaca IH, Lazar C, Moldovan F, Imbroane A (2011) Air temperature trend and the impact on winter wheat phenology in Romania. Clim Change. doi:10.1007/s10584-011-0133-6

  • del Rio S, Penas A, Fraile R (2005) Analysis of recent climatic variations in Castile and Leon (Spain). Atmos Res 73:69–85

    Article  Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386:186–197

    Article  Google Scholar 

  • Gao G, Chen DL, Ren GY, Chen Y, Liao YM (2006) Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J Geog Sci 16:3–12

    Article  Google Scholar 

  • Gao G, Chen D, Xu CY, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. J Geophys Res 112:D11120. doi:10.1029/2006JD008010

    Article  Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agric Water Manage 69:1–11

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007—the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press. 996 pp

  • Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Fard A (2011) Trends in reference evapotranspiration in the humid region of northeast India. Hydrol Process. doi:10.1002/hyp. 8140

  • Kendall MG, Stuart A (1973) The advanced theory by statistics. Griffin, London

    Google Scholar 

  • Kohler MA (1949) Double-mass analysis for testing the consistency of records and for making adjustments. Bull Amer Meteor Soc 30:188–189

    Google Scholar 

  • Kottegoda NT (1980) Stochastic water resources technology. The Macmillan Press Ltd, London

  • Li Y, Horton R, Ren T, Chen C (2010) Prediction of annual reference evapotranspiration using climatic data. Agric Water Manage 97(2):300–308

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B, Sun T (2010) The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin. China Hydrol Process. doi:10.1002/hyp. 7649

  • Ma Z, Kang S, Zhang L, Tong L, Su X (2008) Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J Hydrol 352:239–249

    Article  Google Scholar 

  • Mosmann V, Castro A, Fraile R, Dessens J, Sanchez JL (2004) Detection of statistically significant trends in the summer precipitation of mainland Spain. Atmos Res 70:43–53

    Article  Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2011) Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour Manage. doi:10.1007/s11269-011-9913-z

  • Sneyers R (1990) On the statistical analysis of series of observations. WMO. Technical Note (143). Geneve: World Meteorological Organization, 192 pp

  • Tabari H, Hosseinzadeh Talaee P (2011a) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteor Atmos Phys 111(3–4):121–131

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011b) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396(3–4):313–320

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011c) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Chang 79:1–10

    Article  Google Scholar 

  • Tabari H, Marofi S (2011) Changes of pan evaporation in the west of Iran. Water Resour Manage 25:97–111

    Article  Google Scholar 

  • Tabari H, Aeini A, Hosseinzadeh Talaee P, Shifteh Somee B (2011a) Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol Process. doi:10.1002/hyp. 8146

  • Tabari H, Marofi S, Aeini A, Hosseinzadeh Talaee P, Mohammadi K (2011b) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteor 151:128–136

    Article  Google Scholar 

  • Tabari H, Shifteh Somee B, Rezaeian Zadeh M (2011c) Testing for long-term trends in climatic variables in Iran. Atmos Res 100(1):132–140

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, Part 3. Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A 53:1397–1412

    Google Scholar 

  • Thomas A (2000) Spatial and temporal characteristics of potential evapotranspiration trends over China. Int J Climatol 20:381–396

    Article  Google Scholar 

  • von Storch H (1995) Misuses of statistical analysis in climate research. In: Storch HV, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp 11–26

    Google Scholar 

  • Xu ZX, Takeuchi K, Ishidaira H (2003) Monotonic trend and step changes in Japanese precipitation. J Hydrol 279:144–150

    Article  Google Scholar 

  • Xu C-Y, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93

    Article  Google Scholar 

  • Yin Y, Wu S, Chen G, Dai E (2010) Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor Appl Climatol 101:19–28

    Article  Google Scholar 

  • Yue S, Wang CY (2002) The influence of serial correlation on the Mann–Whitney test for detecting a shift in median. Adv Water Resour 25:325–333

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y, Yang Y (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res 112:D12110. doi:10.1029/2006JD008161

    Article  Google Scholar 

  • Zhang X, Ren Y, Yin ZY, Lin Z, Zheng D (2009) Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J Geophys Res 114:D15105. doi:10.1029/2009JD011753

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Islamic Republic of Iran Meteorological Organization (IRIMO) for making available the meteorological data of the various synoptic stations. We gratefully acknowledge the help of Dr. Adina-Eliza Croitoru from Babes-Bolyai University, Romania. We also thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tabari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabari, H., Nikbakht, J. & Hosseinzadeh Talaee, P. Identification of Trend in Reference Evapotranspiration Series with Serial Dependence in Iran. Water Resour Manage 26, 2219–2232 (2012). https://doi.org/10.1007/s11269-012-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-0011-7

Keywords

Navigation