Skip to main content
Log in

Transatlantic Freshwater Aqueduct

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This paper offers a technical and geopolitical reappraisal of a macro-engineering proposal to plumb Earth’s freshwater, siphoning some of it from a region of surplus (Amazon River Basin) to a region of shortage (arid northern Africa) via his positively buoyant (subsurface floating) seabed-anchored Transatlantic Freshwater Aqueduct. Two different routes for the pipeline, of length 4,317 and 3,745 km, respectively, have been considered. Pipe diameters larger than 60 m are necessary for “reasonable” low pumping power (i.e., less than 20 GW). Using a bundle of smaller size pipes instead of a larger single pipe might overcome technical difficulties but the advantage of simplifying the construction technology might be exceeded by the disadvantage of consuming more power in operation. To keep the number of pumping stations reasonably small (i.e. fewer than 20) a single pipe of diameter higher than 30 m (or bundles of smaller diameter pipes) is required. The Atlantic Ocean currents may be used to provide the necessary power for pumps. The available power possibly provided by the North Brazil Current ranges between 2 and 9 GW. The North Equatorial Current may provide less than 0.3 GW power while the North Equatorial Counter Current provides the largest power availability, ranging between 2 and about 100 GW. A rough cost estimate of the project is about 20,600 GUSD and 18,400 GUSD, respectively, for two pipeline routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison S (2003) Is the age of water development over? ASCE J Irrig Drain Eng 129:304

    Article  Google Scholar 

  • Armstrong EL (1972) The undersea aqueduct—a new concept in transportation. Transp Eng J ASCE, Proceedings of the American Society of Civil Engineers 98:303–310

    Google Scholar 

  • Badescu V, Cathcart RB (2008) Sand dune fixation: a solar-powered Sahara seawater pipeline macroproject. Land Degrad Dev 19:676–691. doi:10.1002/ldr.864

    Article  Google Scholar 

  • Badescu V, Cathcart RB, Schuiling RD (eds) (2006) Macro-engineering: a challenge for the future. Springer, Dordrecht

    Google Scholar 

  • Barnett TP, Pierce DW (2008) When will Lake Mead go dry? Water Resour Res 44:W03201

    Article  Google Scholar 

  • Beech M (2008) Rejuvenating the sun and avoiding other global catastrophes. Springer, Dordrecht

    Google Scholar 

  • Belanger JI, Curry JA, Hoyos CD (2009) Variability in tornado frequency associated with U.S. landfalling tropical cyclones. Geophys Res Lett 36:L17805

    Article  Google Scholar 

  • Bennoune M (1978) Mauritania: a neocolonial desert. Dialect Anthropol 3:43–66

    Article  Google Scholar 

  • Betz A (1966) Introduction to the theory of flow machines. Pergamon, Oxford

    Google Scholar 

  • Bischof B, Mariano AJ, Ryan EH (2003) The North Brazil current. Ocean surface currents. http://oceancurrents.rsmas.miami.edu/atlantic/north-brazil.html. Accessed 1 Aug 2008

  • Bischof B, Rowe E, Mariano AJ, Ryan EH (2004a) The North Equatorial Current. Ocean surface currents. http://oceancurrents.rsmas.miami.edu/atlantic/ north-equatorial.html. Accessed 1 Aug 2008

  • Bischof B, Mariano AJ, Ryan EH (2004b) The North Equatorial Counter Current. Ocean surface currents. http://oceancurrents.rsmas.miami.edu/atlantic/north-equatorial-cc.html. Accessed 1 Aug 2008

  • Boteler DH, Pirjola RJ (2003) Magnetic and electric fields produced in the sea during geomagnetic disturbances. Pure Appl Geophys 160:1695–1716

    Google Scholar 

  • Bouma AH (1990) Naming of undersea features. Geo Mar Lett 10:119–125

    Article  Google Scholar 

  • Buzdugan Gh, Voinea R, Beles A, Mitescu C, Petre A, Blumenfeld M, Constantinescu I (1972) Culegere de probleme din Rezistenta Materialelor. Bucuresti, Ed. Didactica si Pedagogica

  • California Undersea Aqueduct (1975) US Department of the Interior. Bureau of Reclamation Special Report California Undersea Aqueduct Reconnaissance Investigation. (January 1975) 124 pp

  • Cathcart RB (2005) Nautical jugs or not? Curr Sci 88:1211–1212

    Google Scholar 

  • Cathcart RB, Badescu V (2004) Architectural ecology: a tentative Sahara restoration. Int J Environ Stud 61:145–160

    Article  Google Scholar 

  • Charlier RH (1991) Water for the desert—a viewpoint. Int J Environ Stud 39:11–35

    Article  Google Scholar 

  • Charlier RH, Justus JR (1993) Ocean energies: environmental, economic and technological aspects of alternative power sources. Amsterdam, Elsevier

    Google Scholar 

  • Cherubin LM, Richardson PL (2007) Caribbean current variability and the influence of the Amazon and Orinoco freshwater plumes. Deep-sea Res, Part 1, Oceanogr Res Pap 54:1451–1473

    Article  Google Scholar 

  • Clarke GRG, Menard C, Zuluaga AM (2002) Measuring the welfare effects of reform: urban water supply in Guinea. World Dev 30:1517–1537

    Article  Google Scholar 

  • Colliat J-L (2002) Anchors for deepwater to ultra deepwater moorings. OTC 14306 (Offshore Technology Conference held in Houston, Texas USA, 6–9 May 2002), pp 4–6

  • Cook KH, Vizy EK (2008) Effects of twenty-first-century climate change on the Amazon rain forest. J Climate 21:542–560

    Article  Google Scholar 

  • Davenport FL (2004) Fabric structure for a flexible fluid containment vessel. US Patent 6718896 awarded 13 April 2004

  • De Carvalho RC, Magrini A (2006) Conflicts over water resource management in Brazil: a case study of inter-basin transfers. Water Resour Manag 20:193–213

    Article  Google Scholar 

  • Debanne JG (1975) Proposal for a trans-Mediterranean aqueduct. Technol Rev 78:48–55

    Google Scholar 

  • Dore MHI (2005) Exporting fresh water: is there an economic rationale? Water Policy 7:313–327

    Google Scholar 

  • Fernandes RD, Vinzon SB, de Oliveira FAM (2007) Navigation at the Amazon River Mouth: sand bank migration and depth surveying. Ports 2007: 30 years of sharing ideas 1977–2007, pp 1–10

  • Ferziger JH, Peric M (1995) Computational methods for fluid dynamics. Springer, Dordrecht

    Google Scholar 

  • Ffield A (2007) Amazon and Orinoco river plumes and NBC Rings: bystander or participant in hurricane events? J Climate 20:316–333

    Article  Google Scholar 

  • Frankel EG (1998) Rhone-Algeria aqueduct. Interdiscip Sci Rev 23:317–320

    Google Scholar 

  • Freeman TJ, Murray CN, Francis TJG, McPhail SD, Schultheiss PJ (1984) Modelling radioactive waste disposal by penetrator experiments in the abyssal Atlantic Ocean. Nature 310:130–133

    Article  Google Scholar 

  • Frye D (2004) Deepwater mooring designs for ocean observatory science. Mar Technol Soc J 38:7–20

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucce R, Marengo J (2009) Present-day South American Climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Gellert W, Kustner H, Hellwich M, Kastner H (eds) (1980) Mica enciclopedie matematica. Ed. Tehnica, Bucharest, p 338 (translated from German)

  • Glasnovic D, Margeta J (2007) Optimization of irrigation with photovoltaic pumping system. Water Resour Manag 21:1277–1297

    Article  Google Scholar 

  • Goulding M, Barthem R, Ferreira E (2003) The Smithsonia Atlas of the Amazon. The Smithsonian Institution, Washington DC, 253 pp

  • Heckenberger MJ (2009) Lost cities of the Amazon. Sci Am 301:64–71

    Article  Google Scholar 

  • Hellweger FL, Gordon AL (2002) Tracing Amazon river water into the Caribbean Sea. J Mar Res 60:537–549

    Article  Google Scholar 

  • Hemmer H (1993) Partial irrigation of the Sahara Desert. Specul Sci Technol 16:65–68

    Google Scholar 

  • Huurdeman AA (2003) The worldwide history of telecommunications. Wiley-Interscience, New York

    Book  Google Scholar 

  • Ionescu D (1977) Introducere in Hidraulica. Ed. Tehnica, Bucharest, pp 224–233

  • Kaldellis JK, Kondili EM (2007) The water shortage problem I the Aegean archipelago islands: cost-effective desalination prospects. Desalination 216:123–138

    Article  Google Scholar 

  • Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Ramesteiner E, Schlamadinger B, Wunder S, Beach R (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci 105:10302–10307

    Article  Google Scholar 

  • Koppes MN, Montgomery DR (2009) The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geoscience 2:644–647

    Article  Google Scholar 

  • Landau GD (1980) The treaty for Amazonian cooperation: a bold new instrument for development. Ga J Int Comp Law 10:463–489

    Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

    Article  Google Scholar 

  • McCammon LB, Lee FC (1966) Undersea aqueduct system. J Am Water Works Assoc 58:885–902

    Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz M, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574

    Article  Google Scholar 

  • Muller-Karger FE, McClain CR, Richardson PL (1998) The dispersal of the Amazon’s water. Nature 333:56–59

    Article  Google Scholar 

  • Nevle RJ, Bird DK (2008) Effects of syn-pandemic fire suppression and reforestation in the tropical Americas on atmospheric CO2 during European Conquest. Palaeogeogr Palaeoclimatol Palaeoecol 264:25–38

    Article  Google Scholar 

  • Nikiema O, Devenon J-L, Baklouti M (2007) Numerical modeling of the Amazon River plume. Cont Shelf Res 27:873–899

    Article  Google Scholar 

  • Nord Stream (2008) North Transgas and North European Gas Pipeline. http://en.wikipedia.org/wiki/Nord_Stream. Accessed 1 Aug 2008

  • Olariu V, Bratianu C (1986) Modelare numerica cu elemente finite. Ed Tehnica, Bucharest, p 143

  • Omestad T (2008) The new food superpower. US News World Rep 145:35–38

    Google Scholar 

  • Savvin YM (1974) Underwater pipelines for transportation of water across the sea. Power Technol Eng 8(4):369–371

    Google Scholar 

  • Schuiling RD, Badescu V, Cathcart RB, Van Overveld PALC (2005) The Hormuz strait dam macroproject—21st Century Electricity Development Infrastructure (EDIN)? Marine Geosci Geotechnol 23:25–37

    Article  Google Scholar 

  • Schuiling RD, Badescu V, Cathcart RB, Seoud J, Hanekamp JC (2007) Power from closing the Red Sea: economic and ecological costs and benefits following isolation of the Red Sea. Int J Global Environ Issues 7:341–361

    Article  Google Scholar 

  • Singh A (2007) Civil engineering: anachronism and black sheep. J Prof Issues Eng Educ Pract 133:18–30

    Article  Google Scholar 

  • Smith CB (2006) Extreme waves. Joseph Henry Press, Washington DC

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. (see http://www.topex.ucsd.edu/cgi-bin/get_data.cgi at Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093–0225)

    Article  Google Scholar 

  • Soloviev A, Lukas R (2006) The near-surface layer of the ocean. Springer, Dordrecht

    Google Scholar 

  • Syvitski JPM, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115:1–19

    Article  Google Scholar 

  • Tamburri MA (2002) Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biol Conserv 103:331–341

    Article  Google Scholar 

  • Technology White Paper (2006) Ocean current energy potential on the U.S. outer continental shelf, minerals management service, renewable energy and alternate use program, U.S. department of the interior. http://ocsenergy.anl.gov, May 2006

  • Transatlantic Tunnel (2008) http://en.wikipedia.org/wiki/Transatlantic. Accessed 1 Aug 2008

  • Tvedt T, Jakobsson E, Coopey R, Oestigaard R (2006) A history of water, vol 28, 2008, pp 87–95. I.B. Tauris, London

  • Valiantzas JD (2008) Explicit power formula for the Darcy-Weisbach pipe flow equation: application in optimal pipeline design. ASCE J Irrig Drain Eng 134:454–461

    Article  Google Scholar 

  • Wilcox DC (1993) Turbulence models for CFD. DCW Industries, La Canada

    Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–5742

    Article  Google Scholar 

  • Xiao H (2006) Numerical simulation and experiments of a probe descending in the sea. Ocean Eng 33:1343–1353

    Article  Google Scholar 

  • Zhou Y, Tol RSJ (2005) Evaluating the costs of desalination and water transport. Water Resour Res 41:W03003

    Article  Google Scholar 

  • Zuhlsdorff C, Hanebuth TJJ, Henrich R (2008) Persistent quasi-periodic turbidite activity off Saharan Africa and its comparability to orbital and climate cyclicities. Geo Mar Lett 28:87–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Badescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badescu, V., Isvoranu, D. & Cathcart, R.B. Transatlantic Freshwater Aqueduct. Water Resour Manage 24, 1645–1675 (2010). https://doi.org/10.1007/s11269-009-9518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-009-9518-y

Keywords

Navigation